• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 40
  • 11
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Implementing method of moments on a GPGPU using Nvidia CUDA

Virk, Bikram 12 April 2010 (has links)
This thesis concentrates on the algorithmic aspects of Method of Moments (MoM) and Locally Corrected Nyström (LCN) numerical methods in electromagnetics. The data dependency in each step of the algorithm is analyzed to implement a parallel version that can harness the powerful processing power of a General Purpose Graphics Processing Unit (GPGPU). The GPGPU programming model provided by NVIDIA's Compute Unified Device Architecture (CUDA) is described to learn the software tools at hand enabling us to implement C code on the GPGPU. Various optimizations such as the partial update at every iteration, inter-block synchronization and using shared memory enable us to achieve an overall speedup of approximately 10. The study also brings out the strengths and weaknesses in implementing different methods such as Crout's LU decomposition and triangular matrix inversion on a GPGPU architecture. The results suggest future directions of study in different algorithms and their effectiveness on a parallel processor environment. The performance data collected show how different features of the GPGPU architecture can be enhanced to yield higher speedup.
32

Paired pulse basis functions and triangular patch modeling for the method of moments calculation of electromagnetic scattering from three-dimensional, arbitrarily-shaped bodies

Mackenzie, Anne I., Rao, S. M. January 2008 (has links)
Dissertation (Ph.D.)--Auburn University,2008. / Abstract. Vita. Includes bibliographic references (p.83-85).
33

Generalized method of moments exponential distribution family

Lai, Yanzhao. January 2009 (has links) (PDF)
Thesis (M.S.)--University of North Carolina Wilmington, 2009. / Title from PDF title page (February 17, 2010) Includes bibliographical references
34

Understanding and improving moment method scattering solutions /

Davis, Clayton Paul, January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2004. / Includes bibliographical references (p. 95-99).
35

Spatial econometrics models, methods and applications /

Tao, Ji, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains x, 140 p. Includes bibliographical references (p. 137-140). Available online via OhioLINK's ETD Center
36

Essays on theories and applications of spatial econometric models

Lin, Xu, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 114-119).
37

Essays on applied spatial econometrics and housing economics

Kiefer, Hua, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 112-115).
38

Efficient numerical analysis of finite antenna arrays using domain decomposition methods

Ludick, Daniel Jacobus 12 1900 (has links)
Thesis (PhD) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: This work considers the efficient numerical analysis of large, aperiodic finite antenna arrays. A Method of Moments (MoM) based domain decomposition technique called the Domain Green's Function Method (DGFM) is formulated to address a wide range of array problems in a memory and runtime efficient manner. The DGFM is a perturbation approach that builds on work initially conducted by Skrivervik and Mosig for disjoint arrays on multi-layered substrates, a detailed review of which will be provided in this thesis. Novel extensions considered for the DGFM are as follows: a formulation on a higher block matrix factorisation level that allows for the treatment of a wider range of applications, and is essentially independent of the elemental basis functions used for the MoM matrix formulation of the problem. As an example of this, both conventional Rao-Wilton-Glisson elements and also hierarchical higher order basis functions were used to model large array structures. Acceleration techniques have been developed for calculating the impedance matrix for large arrays including one based on using the Adaptive Cross Approximation (ACA) algorithm. Accuracy improvements that extend the initial perturbation assumption on which the method is based have also been formulated. Finally, the DGFM is applied to array geometries in complex environments, such as that in the presence of finite ground planes, by using the Numerical Green's Function (NGF) method in the hybrid NGF-DGFM formulation. In addition to the above, the DGFM is combined with the existing domain decomposition method, viz., the Characteristic Basis Function Method (CBFM), to be used for the analysis of very large arrays consisting of sub-array tiles, such as the Low-Frequency Array (LOFAR) for radio astronomy. Finally, interesting numerical applications for the DGFM are presented, in particular their usefulness for the electromagnetic analysis of large, aperiodic sparse arrays. For this part, the accuracy improvements of the DGFM are used to calculate quantities such as embedded element patterns, which is a major extension from its original formulation. The DGFM has been integrated as part of an efficient array analysis tool in the commercial computational electromagnetics software package, FEKO. / AFRIKAANSE OPSOMMING: In hierdie werkstuk word die doeltre ende analise van eindige, aperiodiese antenna samestellings behandel. Eindige gebied benaderings wat op die Moment Metode (MoM) berus, word as vetrekpunt gebruik. `n Tegniek genaamd die Gebied Green's Funksie Metode (GGFM) word voorgestel en is geskik vir die analise van `n verskeidenheid van ontkoppelde samestellings. Die e ektiewe gebruik van rekenaargeheue en looptyd is onderliggend in die implementasie daarvan. Die GGFM is 'n perturbasie metode wat op die oorspronklike werk van Skrivervik en Mosig berus. Laasgenoemde is hoofsaaklik ontwikkel vir die analise van ontkoppelde antenna samestellings op multilaag di elektrikums. `n Deeglike oorsig van voorafgaande word in die tesis verskaf. In hierdie tesis is die bogenoemde werk op `n unieke wyse uitgebrei: `n ho er blok matriks vlak formulering is ontwikkel wat dit moontlik maak vir die analise van `n verskeidenheid strukture en wat onafhanklik is van die onderliggende basis funksies. Beide lae-vlak Rao-Wilton-Glisson (RWG) basis funksies, asook ho er orde hierargiese basis funksies word gebruik vir die modellering van groot antenna samestellings. Die oorspronklike perturbasie aanname is uitgebrei deur akkuraatheidsverbeteringe vir die tegniek voor te stel. Die Aanpasbare Kruis Benaderings (AKB) tegniek is onder andere gebruik om spoed verbeteringe vir die GGFM te bewerkstellig. Die GGFM is verder uitgebrei vir die analise van antenna samestellings in `n komplekse omgewing, bv. `n antenna samestelling bo `n eindige grondplaat. Die Numeriese Green's Funksie (NGF) metode is hiervoor ingespan en die hibriede NGF-GGFM is ontwikkel. Die GGFM is verder met die Karakteristieke Basis Funksie Metode (KBFM) gekombineer. Die analise van groot skikkings wat bestaan uit sub-skikkings, soos die wat tans by die \Low- Frequency Array (LOFAR) " vir radio astronomie in Nederland gebruik word, kan hiermee gedoen word. In die werkstuk word die GGFM ook toegepas op `n reeks interessante numeriese voorbeelde, veral die toepaslike EM analise van groot aperiodiese samestellings. Die akkuraatheidsverbeteringe vir die GGFM maak die berekening van elementpatrone vir skikkings moontlik. Die GGFM is by the sagteware pakket FEKO geintegreer.
39

Mixed-potential integral equation technique for hybrid microstrip-slotline mutli-layered circuits with horizontal and vertical shielding walls

Schoeman, Marlize 12 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: A complete mixed-potential integral equation formulation for the analysis of arbitrarily shaped scatterers in a planarly layered medium is presented. The integral equation is able to solve for simultaneous electric and magnetic surface currents using a Method of Moments (MoM) procedure. The MoM formulation which was developed uses vector-valued basis functions defined over a triangular mesh and are used to model electric currents on conducting scatterers and magnetic currents on slotline structures. The Green’s functions employed in the analysis were developed for a stratified medium using a Sommerfeld plane wave formulation. The scheme used for filling the method of moments matrix was designed to simultaneously solve multiple problems that are stacked and separated by an infinite conducting ground plane. The filling algorithm also efficiently packs partially symmetric matrices, which are present when solving problems that support a combination of electric and magnetic currents. Several examples are presented to illustrate and validate the analysis method. Numerical predictions of the scattering parameters (both magnitude and phase) show good correspondence with results from literature and measured data. / AFRIKAANSE OPSOMMING: ’n Volledige gemengde potensiaal integraalvergelyking formulering vir die analise van stralers van arbitrˆere vorm binne gelaagde strukture word aangebied. Die integraalvergelyking kan gelyktydige elektriese en magnetiese oppervlakstrome oplos deur die Metode van Momente (MoM) te gebruik. Die MoM formulering gebruik vektor basis funksies wat oor ’n driehoekige diskretisering gedefinieer word om elektriese strome op geleidende stralers en magnetiese strome op gleuflyn strukture te modelleer. Die Green’s funksies wat in die analise gebruik word, is ontwikkel vir gelaagde media deur gebruik te maak van Sommerfeld se platvlakgolf formulering. Die metode wat gebruik word om the moment matriks te vul, is ontwerp om meervoudige gestapelde probleme wat deur oneindig geleidende grondvlakke geskei word, gelyktydig op te los. Gedeeltelik simmetriese matrikse word ook effektief gevul. Hierdie matrikse kom voor wanneer probleme ’n kombinasie van elektriese en magnetiese strome ondersteun. Verskeie voorbeelde word gebruik om die analise metode te verifieer. Numeriese voorspellings van strooiparameters (beide grootte en hoek) vergelyk baie goed met resultate en gemete data wat in die literatuur gevind is. iv
40

The method of moments solution of a nonconformal volume integral equation via the IE-FFT algorithm for electromagnetic scattering from penetrable objects

Ozdemir, Nilufer A., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 114-118).

Page generated in 0.0476 seconds