Spelling suggestions: "subject:"monocarboxylate iransporters (MCTs)"" "subject:"monocarboxylate ransporters (MCTs)""
1 |
Preclinical Evaluation of [18F]FACH in Healthy Mice and Piglets: An 18F-Labeled Ligand for Imaging of Monocarboxylate Transporters with PETGündel, Daniel, Sadeghzadeh, Masoud, Deuther-Conrad, Winnie, Wenzel, Barbara, Cumming, Paul, Toussaint, Magali, Ludwig, Friedrich-Alexander, Moldovan, Rareş-Petru, Kranz, Mathias, Teodoro, Rodrigo, Sattler, Bernhard, Sabri, Osama, Brust, Peter 26 February 2024 (has links)
The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0-60min after pre-treatment with α-CCA-Na in mice (-47%) and in piglets (-66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.
|
2 |
Les astrocytes et la détection hypothalamique du glucose : rôle métabolique et implication des connexines astrocytaires / Astrocytes and hypothalamic glucose sensing : metabolic role and involvement of astroglial connexinsAllard, Camille 30 November 2012 (has links)
L'hypothalamus est fortement impliqué dans la régulation nerveuse de l'homéostasie énergétique. Il existe dans cette structure des neurones spécialisés (gluco-sensibles) qui détectent notamment l’hyperglycémie puis déclenchent des réponses adaptées comme le maintien de la glycémie, en stimulant la sécrétion d’insuline ou encore le rassasiement. Les astrocytes sont suspectés de participer à la détection neuronale du glucose. Dans l’ensemble du cerveau, il existe un couplage métabolique entre astrocytes et neurones. Le lactate, issu de la métabolisation du glucose par les astrocytes, est transporté par les neurones par des transporteurs aux monocarboxylates (MCTs). De plus, il a récemment été montré que les jonctions gap (GJ), à l’origine de la formation de réseaux au sein des astrocytes sont indispensables au passage du glucose de la circulation sanguine vers les neurones en activité. Ces GJ astrocytaires sont formées majoritairement de connexines 43 et 30 (Cxs).Mon travail de thèse s’est orienté suivant deux axes, qui ont visé à étudier le rôle des astrocytes dans la détection hypothalamique du glucose et du lactate. Dans un premier temps, nous avons montré que le lactate, comme le glucose, est détecté au niveau central et induit une sécrétion d’insuline. Dans un modèle de rat hyperglycémique pendant 48h (qui présente aussi une hyperlactatémie), nous avons montré que la détection du glucose et du lactate est altérée. Ces modifications ne sont pas dues à une variation de l’expression protéique des MCTs astrocytaires ou neuronale de l’hypothalamus.Dans un deuxième temps, nous nous sommes intéressés au rôle des Cxs astrocytaires. La Cx43 est très exprimée autour des micro-vaisseaux sanguins de l’hypothalamus médio-basal (MBH), un site présentant de nombreux neurones gluco-sensibles. L’expression de la Cx30 est plus diffuse dans cette structure. Nous montrons également que l’expression protéique des Cxs astrocytaires varie très rapidement suite à des modifications du statut métabolique (jeûne, réalimentation, hyperglycémie). Afin d’évaluer l’implication de la Cx43 astrocytaire (majoritaire) dans la détection hypothalamique du glucose, nous avons inhibé son expression dans le MBH, in vivo, en injectant des siRNA permettant d’inhiber la synthèse de cette protéine. L’inhibition de la Cx43 (30% à 72h) induit une diminution de la prise alimentaire sans modification du poids, de la glycémie et de l’insulinémie comparée aux témoins. Suite à l’injection carotidienne de glucose (censée mimer une hyperglycémie), la sécrétion d’insuline est fortement inhibée chez les animaux siCx43. De même, l’effet satiétogène du glucose semble inhibé chez ces animaux lors de la réalimentation après un jeûne.Ces résultats montrent pour la première fois, de façon intégrée, l’importance des connexines, et probablement des réseaux astrocytaires, lors de la détection hypothalamique du glucose. Ces nouvelles données renforcent l’importance du rôle métabolique des astrocytes lors de fonctions neuronales précises / The hypothalamus plays a pivotal role in the nervous control of glucose homeostasis. This area contains gluco-sensitive neurons. Some of them detect increases in glucose levels and regulate glucose homeostasis by stimulating insulin secretion or inhibiting food intake. It is widely accepted that astrocytes are metabolically coupled to neurons. Lactate, resulting from the metabolism of glucose by astrocytes, is transported via the monocarboxylate transporters (MCTs). In addition, gap junctions (GJ), that form networks within astrocytes, are essential to transfer glucose from the bloodstream to the active neurons. These astroglial GJ mainly consist of connexins 43 and 30 (Cxs).The aims of my thesis are twofold: first, to show that an intracarotid lactate injection toward the brain, as for glucose, triggers insulin secretion and, second, to investigate the role of astroglial Cxs.Our results demonstrate that lactate and glucose sensing are altered in 48h hyperglycemic rats (accompanied by high blood lactate level). These alterations are not due to changes in protein expression of astroglial or neuronal MCTs in the hypothalamus. We then show that Cx43 is highly expressed in astrocytic end-feet enwraping blood vessels, in medio-basal hypothalamus (MBH) where many gluco-sensitive neurons are present. The Cx30 expression is more diffuse in this structure. We also show that the protein expression of astroglial Cxs varies very rapidly due to changes in metabolic status (fasting, refeeding and hyperglycemia). To evaluate the involvement of astroglial Cx43 (the major isoform) in the hypothalamic glucose sensing, we silenced its expression in the MBH in vivo by injecting specific siRNA. A 30% diminution in protein levels (after 72h) induced a decrease in food intake without changes in weight, blood glucose and insulin levels compared to vehicle treated animals. The central response to glucose is drastically inhibited in terms of insulin secretion in siCx43 animals. Similarly, an intracarotid injection of glucose towards the brain does not reduce refeeding in siRNA treated animals.These results demonstrate for the first time in vivo, the importance of connexins and astroglial networks in hypothalamic glucose sensing mechanism. These new data reinforce the importance of the metabolic role of astrocytes in specific neuronal functions
|
Page generated in 0.1123 seconds