• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On and off-axis monochromatic aberrations and myopia in young children

Martinez, Aldo A., Optometry & Vision Science, Faculty of Science, UNSW January 2007 (has links)
Purpose: To study ???on??? and ???off-axis??? wavefront aberration of eyes of children and to determine the relationship with refractive error development. Methods: On and off-axis ocular aberrations of cyclopleged eyes of children (mostly 12 year olds) were measured and compared to data obtained from a group of mostly 6 year old children. Only data from the right eyes were analysed (pupil diameter=5 mm) and categorised into refractive error groups based on ???M???. Differences in ???on??? and ???off-axis??? aberrations between refractive and ethnic groups were analysed using univariate and multivariate analyses of variance with adjustment for multiple comparisons. Off-axis refraction was analysed using skiagrams and mean relative spherical equivalent. Results: Data from 1,636 12 year old children (mean age 12.6 ?? 0.4 years) was analysed. Lower order aberrations were the largest and higher order aberrations contributed to only 25% of the wavefront. There were no differences in the amount of total higher orders between refractive groups. Of the individual higher orders, spherical aberration was greater in hyperopic eyes (0.07 ?? 0.06 ??m) in comparison to emmetropic and myopic eyes (0.05 ?? 0.04 ??m and 0.05 ?? 0.04 ??m) (p<0.001). Myopic eyes had more positive values of Z(3,-1) (p<0.05). Similar results were obtained for the 1,364 6 year old children (mean age 6.7 ??? 0.4 years). Despite East Asian children being more myopic than other ethnic groups (p<0.01), there were no differences in higher orders except for low hyperopic East Asian eyes presenting with higher levels of positive spherical aberrations (p<0.001). When compared to the fovea, off-axis myopic eyes had hyperopia (0.55 to 1.66 D) and emmetropes and hyperopes had myopia (0.10 to -2.00 D). Astigmatism and defocus were the dominant off-axis aberrations. The magnitude of higher order aberrations (mostly 3rd orders) increased with eccentricity but was similar across refractive error groups. Conclusions: Myopic eyes do not have abnormal or excessive levels of on and off-axis higher order aberrations but had patterns of off-axis refraction that may be associated with progression. Considerable inter-subject variability in higher order aberrations was seen for all refractive groups. However, their magnitude was small and suggests that any impact on the optical quality of the eye is negligible.
2

On and off-axis monochromatic aberrations and myopia in young children

Martinez, Aldo A., Optometry & Vision Science, Faculty of Science, UNSW January 2007 (has links)
Purpose: To study ???on??? and ???off-axis??? wavefront aberration of eyes of children and to determine the relationship with refractive error development. Methods: On and off-axis ocular aberrations of cyclopleged eyes of children (mostly 12 year olds) were measured and compared to data obtained from a group of mostly 6 year old children. Only data from the right eyes were analysed (pupil diameter=5 mm) and categorised into refractive error groups based on ???M???. Differences in ???on??? and ???off-axis??? aberrations between refractive and ethnic groups were analysed using univariate and multivariate analyses of variance with adjustment for multiple comparisons. Off-axis refraction was analysed using skiagrams and mean relative spherical equivalent. Results: Data from 1,636 12 year old children (mean age 12.6 ?? 0.4 years) was analysed. Lower order aberrations were the largest and higher order aberrations contributed to only 25% of the wavefront. There were no differences in the amount of total higher orders between refractive groups. Of the individual higher orders, spherical aberration was greater in hyperopic eyes (0.07 ?? 0.06 ??m) in comparison to emmetropic and myopic eyes (0.05 ?? 0.04 ??m and 0.05 ?? 0.04 ??m) (p<0.001). Myopic eyes had more positive values of Z(3,-1) (p<0.05). Similar results were obtained for the 1,364 6 year old children (mean age 6.7 ??? 0.4 years). Despite East Asian children being more myopic than other ethnic groups (p<0.01), there were no differences in higher orders except for low hyperopic East Asian eyes presenting with higher levels of positive spherical aberrations (p<0.001). When compared to the fovea, off-axis myopic eyes had hyperopia (0.55 to 1.66 D) and emmetropes and hyperopes had myopia (0.10 to -2.00 D). Astigmatism and defocus were the dominant off-axis aberrations. The magnitude of higher order aberrations (mostly 3rd orders) increased with eccentricity but was similar across refractive error groups. Conclusions: Myopic eyes do not have abnormal or excessive levels of on and off-axis higher order aberrations but had patterns of off-axis refraction that may be associated with progression. Considerable inter-subject variability in higher order aberrations was seen for all refractive groups. However, their magnitude was small and suggests that any impact on the optical quality of the eye is negligible.
3

Effect of temporal location of correction of monochromatic aberrations on the dynamic accommodation response

Hampson, Karen M., Chin, Sem Sem, Mallen, Edward A.H. January 2010 (has links)
Dynamic correction of monochromatic aberrations of the eye is known to affect the accommodation response to a step change in stimulus vergence. We used an adaptive optics system to determine how the temporal location of the correction affects the response. The system consists of a Shack-Hartmann sensor sampling at 20 Hz and a 37-actuator piezoelectric deformable mirror. An extra sensing channel allows for an independent measure of the accommodation level of the eye. The accommodation response of four subjects was measured during a +/- 0.5 D step change in stimulus vergence whilst aberrations were corrected at various time locations. We found that continued correction of aberrations after the step change decreased the gain for disaccommodation, but increased the gain for accommodation. These results could be explained based on the initial lag of accommodation to the stimulus and changes in the level of aberrations before and after the stimulus step change. Future considerations for investigations of the effect of monochromatic aberrations on the dynamic accommodation response are discussed.

Page generated in 0.1281 seconds