• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Thermo-Fluid Transport Properties of Coated and Uncoated Open-Cell Metal Foam Monoliths

THOMAS, EDWARD ANTHONY 13 December 2011 (has links)
An improved steady-state method combining experiment and mathematical modelling has been developed to characterize the scalable convective heat transfer coefficient, hvol [W*m^(-3)*K^(-1)], of uncoated and catalyst-support coated aluminium foam monoliths. The values of hvol were recovered by parameter fitting its model values to experimental temperature data for steady-state air-cooled monoliths under a known heating flux. The model was built with experimentally recovered values of the monolith’s thermal conductivity and fluid permeability along with known values for other physical parameters. The volumetric heat transfer coefficients of 10, 20 and 40 pore-per-inch uncoated aluminium foams were determined to range between 2,700 and 20,000 W*m^(-3)*K^(-1) at channel Reynolds numbers between 85 and 1,700. The presence of a 76 micron thick anodized layer of catalyst support on monolith foams effected a small but significant reduction in the value of hvol. Coating with an anodized layer also reduced the permeabilities of the monoliths to air flow by 4-20%. Knowledge of the scalable parameter, hvol, was used to model a steady-state non-isothermal, non-isobaric heat-coupled methanol reformer. The model shows that changes to the convective transfer coefficient due to coating the monolith with catalyst support may have significant consequences for the thermal profile of the model reactor and for the product yield. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-12-12 20:11:18.046

Page generated in 0.0568 seconds