• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem e simulação computacional do crescimento de tumores in vitro / Modelling and computational simulation of in vitro tumor growth

Costa, Flávio Henrique Sant\'Ana 12 April 2012 (has links)
O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células. / Tumor growth has been calling attention of physicists and mathematicians for more than sixty years. However, cross-talking with biologists and the interplay between theory and experiment have emerged just recently. Phenomenological equations and computational simulations are still the common toolbox among all the models we know. Thus, in this work, we have studied the problem of monolayer tumor growth through the experimental, theoretical and computational approaches, enhancing the interaction between theory and experiment. We cultivate HeLa (human cervical carcinoma), HCT-15 (human colorectal adenocarcinoma), NIH-HN-13 (human squamous cell carcinoma) and U-251 (human neuronal glioblastoma) cells, calculating the fractal dimension and the behavior of the mean radius with cell number, and analyzing the literature data from HT-29 (human colorectal adenocarcinoma) lineage. Then we modeled the growth rate of mean radius through a sigmoidal curve. The analytical solution of this equation allowed us to fit well the experimental data and the obtained parameters were used into dynamical Monte Carlo simulation. To do this, we transform the radius growth rate in number of cells growth rate, which again agreed with the experimental data. The fractal dimensions of the aggregates ranged from 1; 12 df 1; 21, and agree with the literature. New findings were produced: i) the mean radius as a function of the number of cells enabled us to adjust the function Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, differently from widely accepted relation Rc(t) = cNc(t)1=2; and ii) the waiting times in the MCD procedure are log-normally distributed (sometimes Gaussian), unlike the Poisson distribution often used. The lognormal distribution also allowed us to conjecture that a parameter , from the power law relation ht(nT)i / n? T , might caracterize the tumor monolayer growth due to its narrow range 0; 69 0; 81. Our findings led us to conclude that different culture conditions may produce different parameter responses, furthermore, two phenomenona can describe the growth in mesoscopic level: the competition for free space and the cooperation between cells.
2

Sobre mecanismos mesoscópicos do crescimento de tumores / On the Mesoscopic Mechanisms of Tumor Growth

Costa, Flávio Henrique Sant\'Ana 12 August 2016 (has links)
O estudo do crescimento de tumores tem inspirado o aparecimento de diversos modelos, que visam aproximar às características reais das interações entre as células da população tumoral. Do ponto de vista biológico, destacam-se como modelos as culturas de células in vitro. Elas são úteis por reduzir a complexidade intrínseca da massa tumoral real. Do ponto de vista matemático e físico, destacam-se a procura por comportamentos universais, e o uso de simulação numérica para a solução dos modelos propostos. Essas abordagens são úteis por ressaltar as características importantes do crescimento de tumores, promover um intercâmbio de conhecimento com áreas aparentemente distintas, tais como: crescimento de cristais, reações bioquímicas e epidemiologia, além de gerar soluções que seriam difíceis de obter analiticamente. Neste trabalho, abordamos o crescimento de tumores a nível mesoscópico (escala celular), por meio de: (i) experimentos de cultura de células in vitro, de onde obtivemos dados da evolução temporal do raio das colônias e os tempos de duplicação característicos; (ii) modelagem matemática, em que propomos uma taxa de crescimento em função do tempo com forma sigmoidal, e uma equação fenomenológica para a evolução temporal dos agregados; e (iii) descrição estocástica, em que apresentamos um conjunto de regras para a interação entre os elementos da população tumoral e simulamos a dinâmica temporal usando o método Monte Carlo dinâmico (DMC), obtendo as curvas de crescimento e as distribuições de tempo das colônias. Além disso, desenvolvemos uma generalização para o método DMC, em que é possível incluir eventos simultâneos. Essa generalização foi aplicada ao modelo matemático de Dawson e Hillen para uma população de células sujeita a radioterapia, gerando as distribuições de tempos de extinção, e a probabilidade de controle tumoral (TCP). A abordagem ao crescimento de tumores nos permitiu comparar o experimento, a modelagem matemática, e a descrição estocástica com sucesso, e mostramos que a dinâmica de crescimento de vários tipos de células possui o mesmo formato sigmoidal, sugerindo uma universalidade para as taxas de crescimento de células aderentes. Comparamos os tempos de duplicação obtidos experimentalmente e por meio de DMC, e oferecemos alguns insights matemáticos a respeito dos tempos de duplicação obtidos através de DMC. Concluímos que o desenvolvimento teórico-experimental, ao nível mesoscópico, foi capaz de gerar novas ideias sobre mecanismos de crescimento tumorais de células aderentes, e novas perspectivas para abordagem do problema de crescimento de tumores. / The study of tumor growth has inspired the emergence of several models, aiming to reproduce actual patterns of interactions between cells in the tumor population. From the biological point of view, in vitro cell culture models stand out. They are useful to reduce the intrinsic complexity of the actual tumor mass. From the mathematical and physical point of view, stand out the search for universal behaviors and the use of numerical simulation to solve proposed models. These approaches are useful to point out important characteristics of the problem, promoting a knowledge exchange with seemingly distinct areas such as: crystal growth, biochemical reactions and epidemiology, and generating solutions that could be difficult to obtain analytically. In this thesis we approach the tumor growth problem at the mesoscopic level (cellular scale), by means of: (i) cell culture experiments in vitro, generating data for the radius temporal evolution and characteristic doubling times for several colonies; (ii) mathematical modeling, in which we propose a sigmoidal growth rate and time evolution of aggregates by a phenomenological equation; and (iii) stochastic description, where we present a set of rules to describe the interactions among the elements in the tumor population, and we simulate them using the dynamical Monte Carlo (DMC) method, obtaining the growth curves and the time distributions. In addition, we have developed a generalization of the DMC method, making the simulation of simultaneous events to be possible. Such generalization was applied to mathematical model of Dawson and Hillen for a population of cells subjected to radiotherapy, and it was possible to obtain the distributions of extinction times and Tumor Control Probability (TCP). Our approach allowed us to compare tumor growth in experiment with theory, and good agreement were found in our results. Furthermore, we have shown that sigmoidal growth rate appears in several cell lineages, suggesting universal-like behavior. We have compared the doubling times obtained in the experiments and in the DMC simulations, and we show some mathematical insights about the doubling times. We concluded that our theoretical and experimental approach, at the mesoscopic level, could generate new ideas on tumor growth mechanisms of adherent cells and new perspectives in the study of the tumor growth.
3

Modelagem e simulação computacional do crescimento de tumores in vitro / Modelling and computational simulation of in vitro tumor growth

Flávio Henrique Sant\'Ana Costa 12 April 2012 (has links)
O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células. / Tumor growth has been calling attention of physicists and mathematicians for more than sixty years. However, cross-talking with biologists and the interplay between theory and experiment have emerged just recently. Phenomenological equations and computational simulations are still the common toolbox among all the models we know. Thus, in this work, we have studied the problem of monolayer tumor growth through the experimental, theoretical and computational approaches, enhancing the interaction between theory and experiment. We cultivate HeLa (human cervical carcinoma), HCT-15 (human colorectal adenocarcinoma), NIH-HN-13 (human squamous cell carcinoma) and U-251 (human neuronal glioblastoma) cells, calculating the fractal dimension and the behavior of the mean radius with cell number, and analyzing the literature data from HT-29 (human colorectal adenocarcinoma) lineage. Then we modeled the growth rate of mean radius through a sigmoidal curve. The analytical solution of this equation allowed us to fit well the experimental data and the obtained parameters were used into dynamical Monte Carlo simulation. To do this, we transform the radius growth rate in number of cells growth rate, which again agreed with the experimental data. The fractal dimensions of the aggregates ranged from 1; 12 df 1; 21, and agree with the literature. New findings were produced: i) the mean radius as a function of the number of cells enabled us to adjust the function Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, differently from widely accepted relation Rc(t) = cNc(t)1=2; and ii) the waiting times in the MCD procedure are log-normally distributed (sometimes Gaussian), unlike the Poisson distribution often used. The lognormal distribution also allowed us to conjecture that a parameter , from the power law relation ht(nT)i / n? T , might caracterize the tumor monolayer growth due to its narrow range 0; 69 0; 81. Our findings led us to conclude that different culture conditions may produce different parameter responses, furthermore, two phenomenona can describe the growth in mesoscopic level: the competition for free space and the cooperation between cells.
4

Sobre mecanismos mesoscópicos do crescimento de tumores / On the Mesoscopic Mechanisms of Tumor Growth

Flávio Henrique Sant\'Ana Costa 12 August 2016 (has links)
O estudo do crescimento de tumores tem inspirado o aparecimento de diversos modelos, que visam aproximar às características reais das interações entre as células da população tumoral. Do ponto de vista biológico, destacam-se como modelos as culturas de células in vitro. Elas são úteis por reduzir a complexidade intrínseca da massa tumoral real. Do ponto de vista matemático e físico, destacam-se a procura por comportamentos universais, e o uso de simulação numérica para a solução dos modelos propostos. Essas abordagens são úteis por ressaltar as características importantes do crescimento de tumores, promover um intercâmbio de conhecimento com áreas aparentemente distintas, tais como: crescimento de cristais, reações bioquímicas e epidemiologia, além de gerar soluções que seriam difíceis de obter analiticamente. Neste trabalho, abordamos o crescimento de tumores a nível mesoscópico (escala celular), por meio de: (i) experimentos de cultura de células in vitro, de onde obtivemos dados da evolução temporal do raio das colônias e os tempos de duplicação característicos; (ii) modelagem matemática, em que propomos uma taxa de crescimento em função do tempo com forma sigmoidal, e uma equação fenomenológica para a evolução temporal dos agregados; e (iii) descrição estocástica, em que apresentamos um conjunto de regras para a interação entre os elementos da população tumoral e simulamos a dinâmica temporal usando o método Monte Carlo dinâmico (DMC), obtendo as curvas de crescimento e as distribuições de tempo das colônias. Além disso, desenvolvemos uma generalização para o método DMC, em que é possível incluir eventos simultâneos. Essa generalização foi aplicada ao modelo matemático de Dawson e Hillen para uma população de células sujeita a radioterapia, gerando as distribuições de tempos de extinção, e a probabilidade de controle tumoral (TCP). A abordagem ao crescimento de tumores nos permitiu comparar o experimento, a modelagem matemática, e a descrição estocástica com sucesso, e mostramos que a dinâmica de crescimento de vários tipos de células possui o mesmo formato sigmoidal, sugerindo uma universalidade para as taxas de crescimento de células aderentes. Comparamos os tempos de duplicação obtidos experimentalmente e por meio de DMC, e oferecemos alguns insights matemáticos a respeito dos tempos de duplicação obtidos através de DMC. Concluímos que o desenvolvimento teórico-experimental, ao nível mesoscópico, foi capaz de gerar novas ideias sobre mecanismos de crescimento tumorais de células aderentes, e novas perspectivas para abordagem do problema de crescimento de tumores. / The study of tumor growth has inspired the emergence of several models, aiming to reproduce actual patterns of interactions between cells in the tumor population. From the biological point of view, in vitro cell culture models stand out. They are useful to reduce the intrinsic complexity of the actual tumor mass. From the mathematical and physical point of view, stand out the search for universal behaviors and the use of numerical simulation to solve proposed models. These approaches are useful to point out important characteristics of the problem, promoting a knowledge exchange with seemingly distinct areas such as: crystal growth, biochemical reactions and epidemiology, and generating solutions that could be difficult to obtain analytically. In this thesis we approach the tumor growth problem at the mesoscopic level (cellular scale), by means of: (i) cell culture experiments in vitro, generating data for the radius temporal evolution and characteristic doubling times for several colonies; (ii) mathematical modeling, in which we propose a sigmoidal growth rate and time evolution of aggregates by a phenomenological equation; and (iii) stochastic description, where we present a set of rules to describe the interactions among the elements in the tumor population, and we simulate them using the dynamical Monte Carlo (DMC) method, obtaining the growth curves and the time distributions. In addition, we have developed a generalization of the DMC method, making the simulation of simultaneous events to be possible. Such generalization was applied to mathematical model of Dawson and Hillen for a population of cells subjected to radiotherapy, and it was possible to obtain the distributions of extinction times and Tumor Control Probability (TCP). Our approach allowed us to compare tumor growth in experiment with theory, and good agreement were found in our results. Furthermore, we have shown that sigmoidal growth rate appears in several cell lineages, suggesting universal-like behavior. We have compared the doubling times obtained in the experiments and in the DMC simulations, and we show some mathematical insights about the doubling times. We concluded that our theoretical and experimental approach, at the mesoscopic level, could generate new ideas on tumor growth mechanisms of adherent cells and new perspectives in the study of the tumor growth.
5

Estudos dos tempos de incubação de doenças priônicas utilizando o método Monte Carlo Dinâmico / Studies of the Incubation Times of Prionic Diseases by Dynamical Monte Carlo Method

Maciel, Náira Rezende 17 October 2008 (has links)
Príons são patógenos infecciosos que causam um grupo de doenças neurodegenerativas fatais. A proteína normal, PrP celular, denominada PrPC, é convertida em PrPSc, isoforma anormal e patogênica de PrP, através de um processo no qual uma porção de -hélice da estrutura é reenovelada em folhas . A conversão de PrPC em PrPSc ocorre por um mecanismo auto-catalítico. Para um melhor entendimento do mecanismo de propagação dos príons, têm sido propostos vários modelos matemáticos. Nesse trabalho, estudamos o tempo de incubação de algumas doenças causadas por príons: Encefalopatia Espongiforme Bovina (BSE), ou mal da vaca louca; doença variante de Creutzfeldt-Jakob (vCJD), que afeta humanos, através da exposição ao agente de BSE; e Scrapie murina, uma infecção priônica experimental em camundongos. A distribuição de probabilidades da duração do período de incubação foi suposta ser lognormal, modelo este extensamente aceito em doenças infecciosas. Os objetivos desse trabalho foram esclarecer aspectos obscuros sobre a cinética de replicação priônica e o mecanismo de toxicidade das doenças priônicas, através de comparação dos resultados de simulações computacionais com os perfis de distribuição de tempos de incubação de BSE, vCJD e Scrapie murina. Foram realizadas simulações computacionais, utilizando o Método Monte Carlo Dinâmico (MCD) e o modelo Difusão Limitada à Agregação. Primeiramente, estudamos o modelo de Eigen (1996), através de simulações computacionais usando o MCD, para verificar quais termos são importantes para a cinética priônica. De posse desse resultado, partimos então para o estudo sobre a toxicidade das doenças priônicas, usando o modelo DLA e o método MCD: considerando que PrPC se converte em PrPSc quando existe contato (auto-catálise); e PrPCs são livres e podem se movimentar por uma rede, enquanto PrPScs, ou agregados de PrPScs são fixos. Confirmamos a suspeita de Eigen de que o termo mais importante nas equações de cinética priônica é o termo de Michaelis-Menten, ou termo auto-catalítico. Os resultados obtidos através das simulações MCD e modelo DLA foram comparados com os perfis de distribuições de tempos dessas doenças (BSE, vCJD e Scrapie murina). Conseguimos o ajuste de diferentes perfis de distribuição de tempos de incubação para algumas doenças priônicas, lognormal para BSE e vCJD, e lognormal com segundo pico para Scrapie murina. A auto-catálise é o mecanismo mais importante na cinética priônica, a conversão espontânea de PrPC em PrPSc pode ser negligenciada. A partir do modelo DLA, fica reforçada a hipótese de que para BSE e vCJD, doenças priônicas de ocorrência natural, a toxicidade é causada, principalmente, pela formação das placas amilóides. Para Scrapie murina, uma infecção experimentalmente induzida, a toxicidade é, possivelmente, causada por dois mecanismos: formação das placas amilóides e depleção de PrPC. Apenas com a mudança dos parâmetros iniciais e finais, conseguimos ajustar as distribuições de tempos de incubação das três doenças priônicas estudadas, apesar de o modelo ser bastante simples. A lognormalidade, de acordo com o modelo, é resultado do processo difusivo. As concentrações de PrPC devem ser baixas, menores que 1% e o número de PrPScs deve ser menor que 10 para que a lognormalidade ocorra sem a depleção de PrPC. / Prions are infectious agents responsible for a group of fatal neurodegenerative disorders. A pathogenic isoform of the prion protein (PrPSc) generated by a posttranslational process involving the conversion of alpha helices into beta sheets of the normal cellular prion protein (PrPC) is believed to be the main component of these infectious agents. The conversion of a normal PrPC into an abnormal isoform PrPSc, kinetically follows through an autocatalytic process. For better understanding of this kind of abnormal protein propagation, many analytical models have been proposed. Thus, we studied, using the Monte Carlo method, the distribution of the incubation periods in some of these neurodegenerative disorders, such as: bovine spongiform encephalopathy well known as mad cow disease (BSE), Variant Creutzfeldt Jakob disease (vCJD) and murine scrapie, an experimental murine prionic disease. The distribution of the incubation times of these diseases were considered lognormal. The aim of this study was to investigate some aspects of toxicity and replication of the prionic diseases, by comparing the results of computational simulations with the incubation times of BSE, vCJD and murine scrapie, previously established. Computational simulations, using a Dynamical Monte Carlo method (DMC) and the diffusion limited aggregation model (DLA), were worked out. At first, we evaluate the Eigen model through computational simulations using the DMC to verify the essential parameters in the kinetic of the prionic diseases. Following the results, we studied the toxicity of the prionic diseases using the DMC and the DLA model; by considering that PrPC converting in PrPSc just when exists contact (autocatalysis) and free PrPCs are allowed to diffuse randomly to their nearest neighbour sites in a square lattice, while isolated PrPScs or aggregate of PrPScs are fixed. Confirming the Eigen suspicion, the most important parameter in the equation of the prionic kinetic is the Michaelis Menten term (or the autocatalytic term). The results obtained through simulations using DMC and DLA model were compared with the time distribution profiles of the prionic diseases already established (BSE, vCJD and murine Scrapie). We get the fitting in different profiles of the distribution of the incubation periods (lognormal to BSE and vCJD and lognormal with a second peak to murine scrapie). It is concluded that autocatalysis is an essential mechanism for the prionic kinetics and the spontaneous conversion of PrPC in PrPSc can be neglected. Starting from the DLA model, is reinforced that the hypothesis for BSE and vCJD, prionic diseases of natural occurrence, the toxicity is caused, mainly, by the formation of amyloid plaques. For Scrapie murina, an experimentally induced infection, the toxicity is, possibly, caused by two mechanisms: formation of amyloid plaques and depletion of PrPC. Just with the change of the initial and final parameters, we fitted all studied prionic diseases, in spite of the model to be quite simple. The lognormality from the model, is resulting of a diffusive process. Concentrations of PrPC should be low, smaller than 1% and the number of PrPScs should be smaller than 10 for the lognormality take place without the depletion of PrPC.
6

Estudos dos tempos de incubação de doenças priônicas utilizando o método Monte Carlo Dinâmico / Studies of the Incubation Times of Prionic Diseases by Dynamical Monte Carlo Method

Náira Rezende Maciel 17 October 2008 (has links)
Príons são patógenos infecciosos que causam um grupo de doenças neurodegenerativas fatais. A proteína normal, PrP celular, denominada PrPC, é convertida em PrPSc, isoforma anormal e patogênica de PrP, através de um processo no qual uma porção de -hélice da estrutura é reenovelada em folhas . A conversão de PrPC em PrPSc ocorre por um mecanismo auto-catalítico. Para um melhor entendimento do mecanismo de propagação dos príons, têm sido propostos vários modelos matemáticos. Nesse trabalho, estudamos o tempo de incubação de algumas doenças causadas por príons: Encefalopatia Espongiforme Bovina (BSE), ou mal da vaca louca; doença variante de Creutzfeldt-Jakob (vCJD), que afeta humanos, através da exposição ao agente de BSE; e Scrapie murina, uma infecção priônica experimental em camundongos. A distribuição de probabilidades da duração do período de incubação foi suposta ser lognormal, modelo este extensamente aceito em doenças infecciosas. Os objetivos desse trabalho foram esclarecer aspectos obscuros sobre a cinética de replicação priônica e o mecanismo de toxicidade das doenças priônicas, através de comparação dos resultados de simulações computacionais com os perfis de distribuição de tempos de incubação de BSE, vCJD e Scrapie murina. Foram realizadas simulações computacionais, utilizando o Método Monte Carlo Dinâmico (MCD) e o modelo Difusão Limitada à Agregação. Primeiramente, estudamos o modelo de Eigen (1996), através de simulações computacionais usando o MCD, para verificar quais termos são importantes para a cinética priônica. De posse desse resultado, partimos então para o estudo sobre a toxicidade das doenças priônicas, usando o modelo DLA e o método MCD: considerando que PrPC se converte em PrPSc quando existe contato (auto-catálise); e PrPCs são livres e podem se movimentar por uma rede, enquanto PrPScs, ou agregados de PrPScs são fixos. Confirmamos a suspeita de Eigen de que o termo mais importante nas equações de cinética priônica é o termo de Michaelis-Menten, ou termo auto-catalítico. Os resultados obtidos através das simulações MCD e modelo DLA foram comparados com os perfis de distribuições de tempos dessas doenças (BSE, vCJD e Scrapie murina). Conseguimos o ajuste de diferentes perfis de distribuição de tempos de incubação para algumas doenças priônicas, lognormal para BSE e vCJD, e lognormal com segundo pico para Scrapie murina. A auto-catálise é o mecanismo mais importante na cinética priônica, a conversão espontânea de PrPC em PrPSc pode ser negligenciada. A partir do modelo DLA, fica reforçada a hipótese de que para BSE e vCJD, doenças priônicas de ocorrência natural, a toxicidade é causada, principalmente, pela formação das placas amilóides. Para Scrapie murina, uma infecção experimentalmente induzida, a toxicidade é, possivelmente, causada por dois mecanismos: formação das placas amilóides e depleção de PrPC. Apenas com a mudança dos parâmetros iniciais e finais, conseguimos ajustar as distribuições de tempos de incubação das três doenças priônicas estudadas, apesar de o modelo ser bastante simples. A lognormalidade, de acordo com o modelo, é resultado do processo difusivo. As concentrações de PrPC devem ser baixas, menores que 1% e o número de PrPScs deve ser menor que 10 para que a lognormalidade ocorra sem a depleção de PrPC. / Prions are infectious agents responsible for a group of fatal neurodegenerative disorders. A pathogenic isoform of the prion protein (PrPSc) generated by a posttranslational process involving the conversion of alpha helices into beta sheets of the normal cellular prion protein (PrPC) is believed to be the main component of these infectious agents. The conversion of a normal PrPC into an abnormal isoform PrPSc, kinetically follows through an autocatalytic process. For better understanding of this kind of abnormal protein propagation, many analytical models have been proposed. Thus, we studied, using the Monte Carlo method, the distribution of the incubation periods in some of these neurodegenerative disorders, such as: bovine spongiform encephalopathy well known as mad cow disease (BSE), Variant Creutzfeldt Jakob disease (vCJD) and murine scrapie, an experimental murine prionic disease. The distribution of the incubation times of these diseases were considered lognormal. The aim of this study was to investigate some aspects of toxicity and replication of the prionic diseases, by comparing the results of computational simulations with the incubation times of BSE, vCJD and murine scrapie, previously established. Computational simulations, using a Dynamical Monte Carlo method (DMC) and the diffusion limited aggregation model (DLA), were worked out. At first, we evaluate the Eigen model through computational simulations using the DMC to verify the essential parameters in the kinetic of the prionic diseases. Following the results, we studied the toxicity of the prionic diseases using the DMC and the DLA model; by considering that PrPC converting in PrPSc just when exists contact (autocatalysis) and free PrPCs are allowed to diffuse randomly to their nearest neighbour sites in a square lattice, while isolated PrPScs or aggregate of PrPScs are fixed. Confirming the Eigen suspicion, the most important parameter in the equation of the prionic kinetic is the Michaelis Menten term (or the autocatalytic term). The results obtained through simulations using DMC and DLA model were compared with the time distribution profiles of the prionic diseases already established (BSE, vCJD and murine Scrapie). We get the fitting in different profiles of the distribution of the incubation periods (lognormal to BSE and vCJD and lognormal with a second peak to murine scrapie). It is concluded that autocatalysis is an essential mechanism for the prionic kinetics and the spontaneous conversion of PrPC in PrPSc can be neglected. Starting from the DLA model, is reinforced that the hypothesis for BSE and vCJD, prionic diseases of natural occurrence, the toxicity is caused, mainly, by the formation of amyloid plaques. For Scrapie murina, an experimentally induced infection, the toxicity is, possibly, caused by two mechanisms: formation of amyloid plaques and depletion of PrPC. Just with the change of the initial and final parameters, we fitted all studied prionic diseases, in spite of the model to be quite simple. The lognormality from the model, is resulting of a diffusive process. Concentrations of PrPC should be low, smaller than 1% and the number of PrPScs should be smaller than 10 for the lognormality take place without the depletion of PrPC.

Page generated in 0.0708 seconds