• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reliability assessment of foundations for offshore mooring systems under extreme environments

Choi, Young Jae, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
2

Reliability assessment of foundations for offshore mooring systems under extreme environments

Choi, Young Jae, 1970- 28 August 2008 (has links)
Mooring systems for floating facilities that are used offshore to produce oil and gas, consisting of individual mooring lines and foundations, are currently designed on the basis of individual components and on a case-by-case basis. The most heavily loaded line and anchor are checked under extreme loading conditions (hurricane and loop current) with the system of lines intact and with one line removed. However, the performance of the entire mooring system depends more directly on the performance of the system of lines and foundations rather than on the performance of a single component. In this study, a floating production system design originally developed by the industry consortium, DeepStar, was chosen for study. The mooring system was designed for three different nominal water depths: 1000, 2000 and 3000 m. It is a classic spar with steel mooring lines in 1000 m of water and polyester mooring lines in deeper depths. Based on simulated results of loads on mooring lines and foundations using a numerical model, reliability analyses were conducted using representative probabilistic descriptions of the extreme met-ocean conditions, hurricanes and loop currents, in the Gulf of Mexico. The probability of failure of individual mooring line components during a 20-year design life is calculated first, followed by that of a complete mooring line which consists of top and bottom chains, a steel cable or polyester rope at the middle and a suction caisson foundation, and finally that of the mooring system. It is found that foundations have failure probabilities that are more than an order of magnitude smaller than those for lines under extreme loading. Mooring systems exhibit redundancy in that the failure of the most heavily loaded component during an extreme event does not necessarily lead to failure of the system. The system reliability and redundancy are greater for the taut versus semi-taut systems and is greater for designs governed by loop current versus hurricane events. Although this study concerns about the mooring systems of a classical spar, the methodology of the reliability analysis and the conclusions made in this study may have important implications to the other deepwater mooring systems / text
3

The effects of boat mooring systems on squid egg beds during squid fishing

Maluleke, Vutlhari Absalom January 2017 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2017. / In South Africa, squid fishing vessels need to find and then anchor above benthic squid egg beds to effect viable catches. However, waves acting on the vessel produce a dynamic response on the anchor line. These oscillatory motions produce impact forces of the chain striking the seabed. It is hypothesised that this causes damage to the squid egg bed beneath the vessels. Different mooring systems may cause more or less damage and this is what is investigated in this research. The effect of vessel mooring lines impact on the seabed during squid fishing is investigated using a specialised hydrodynamic tool commercial package ANSYS AQWA models. This study analysed the single-point versus the two-point mooring system’s impact on the seabed. The ANSYS AQWA models were developed for both mooring systems under the influence of the wave and current loads using the 14 and 22 m vessels anchored with various chain sizes. The effect of various wave conditions was investigated as well as the analysis of three mooring line configurations. The mooring chain contact pressure on the seabed is investigated beyond what is output from ANSYS AQWA using ABAQUS finite element analysis. The real-world velocity of the mooring chain underwater was obtained using video analysis. The ABAQUS model was built by varying chain sizes at different impact velocities. The impact pressure and force due to this velocity was related to mooring line impact velocity on the seabed in ANSYS AQWA. Results show the maximum impact pressure of 191 MPa when the 20 mm diameter chain impacts the seabed at the velocity of 8 m/s from video analysis. It was found that the mooring chain impact pressure on the seabed increased with an increase in the velocity of impact and chain size. The ANSYS AQWA impact pressure on the seabed was found to be 170.86 MPa at the impact velocity of 6.4 m/s. The two-point mooring system was found to double the seabed mooring chain contact length compared to the single-point mooring system. Both mooring systems showed that the 14 m vessel mooring line causes the least seabed footprint compared to the 22 m vessel.
4

Experimental response and analysis of the Evergreen Point Floating Bridge

Peterson, Scott Thomas, January 2002 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, 2002. / Title from PDF title page (viewed on May 26, 2005). Includes bibliographical references (p. 275-279).

Page generated in 0.052 seconds