Spelling suggestions: "subject:"morphing airfoil"" "subject:"morphing irfoil""
1 |
Evaluating the Aerodynamic Performance of MFC-Actuated Morphing Wings to Control a Small UAVProbst, Troy Anthony 06 November 2012 (has links)
The purpose of this research is to evaluate certain performance characteristics of a morphing<br />wing system that uses Macro Fiber Composites (MFC) to create camber change. This<br />thesis can be broken into two major sections. The first half compares a few current MFC<br />airfoil designs to each other and to a conventional servomechanism (servo) airfoil. Their<br />performance was measured in terms of lift and drag in a 2-D wind tunnel. The results<br />showed MFC airfoils were effective but limited by aeroelasticity compared to the servo. In<br />addition, a morphed airfoil and a flapped airfoil were rapid prototyped and tested to isolate<br />the effects of discontinuity. The continuous morphed airfoil produced more lift with less<br />drag.<br />The second half of this thesis work focused on determining the ideal MFC configurations for<br />a thin wing application. Simulations were run on a thin wing with embedded MFCs such<br />that the whole wing morphed. Finite element and vortex lattice models were used to predict<br />deflections and rolling moment coefficients. Different configuration parameters were then<br />varied to quantify their effect. The comparisons included MFC location, number of MFCs,<br />material substrate, and wing thickness. A prototype wing was then built and flight tested.<br />While the simulations overestimated the wing deflection, the flight results illustrated the<br />complexity and variability associated with the MFC morphing system. The rolling moment<br />coefficients from flight were consistent with the simulation given the differences in deflection. / Master of Science
|
2 |
Characterization of Oscillatory Lift in MFC AirfoilsLang Jr, Joseph Reagle 25 November 2014 (has links)
The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil.
The transfer function is then used to determine the lift component due to cambering and extract the inertial components from oscillating airfoil. Finally, empirical wind tunnel data is modeled and used to simulate the deflection of airfoil surfaces during dynamic testing conditions. This research serves to combine modal analysis, empirical modeling, and aerodynamic testing of MFC driven, oscillating lift to formulate a model of a dynamic, loaded morphing airfoil. / Master of Science
|
Page generated in 0.0353 seconds