• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Renewable thermoplastic multiphase systems from dimer fatty acids : characterization of the "morphology-properties" relationships / Etude de nouveaux systèmes multiphasés bio-sourcés à base de thermoplastiques issus de dimères d'acides gras : analyse des relations "structures-propriétés"

Reulier, Marie 07 April 2016 (has links)
Dans un contexte de développement durable, des matériaux thermoplastiques multiphasés biosourcés issus de dimères d’acides gras ont été élaborés pour développer une « eco-membrane » durable pour le bâtiment. Différentes formulations intégrant des polymères thermoplastiques biosourcés, polyuréthane thermoplastique (TPU) et polyamide (DAPA), des micro-charges minérales et des renforts cellulosiques ont été élaborées et analysées. Les relations « structures-propriétés » de ces systèmes multiphasés ont été étudiées. Les architectures macromoléculaires proches ont permis d’obtenir un certain degré de compatibilité entre les polymères. Les viscosités à l’état fondu du TPU et DAPA sont comparables, ce qui permet une bonne dispersion des phases du mélange lors de la mise en œuvre. Les propriétés mécaniques et la stabilité dimensionnelle des mélanges sont améliorées par ajout de micro-charges minérales. L’impact du facteur de forme des charges sur le module d’Young a été analysé et modélisé avec un modèle micro-mécanique. Des essais du type charge-décharge ont également été menés afin d’étudier le comportement à la fatigue des biocomposites. Enfin, les interactions et les affinités entre les renforts et polymères ont été approchées. Des modifications chimiques ont été développées à la surface des fibres afin de diminuer leurs caractères hydrophiles et d’améliorer la compatibilisation avec la matrice. L’impact de ces modifications sur l’interface fibres-matrice a ensuite été analysé. Les différentes études réalisées ont permis de sélectionner pas à pas les différents constituants de l’éco-membrane pour réaliser in fine un prototype prometteur. / In the context of sustainable development, renewable multiphase systems from thermoplastics based on dimers of fatty acids were prepared to develop a renewable waterproofing material for building applications. Formulations based on thermoplastics, i.e. thermoplastic polyurethane (TPU) and polyamide (DAPA), mineral micro-fillers and cellulosic fibers were prepared with a special focus on the morphology-property relationships of the multiphase systems obtained thereof. The close macromolecular architectures promote a certain degree of compatibility between the polymers. Comparable viscosities in the melt state ensure a good dispersion of the matrices within each other during processing. The mechanical properties and dimensional stability were improved with micro-fillers. The effect of the aspect ratio of the fillers on the elastic properties was investigated and micro-mechanical modelling of the Young’s Modulus was performed. The fatigue behavior of the biocomposites was also examined through loading and unloading tests. Finally, interactions and affinities between the fibers and polymers were characterized. Chemical modifications were carried out on the surface of the fibers to decrease their hydrophilic nature and improve the fiber-matrix adhesion. The effect of the chemical modification was then investigated. Step-by-step, the studies carried out ensured the selection of the optimal components for a renewable waterproofing material enabling the production of a promising prototype.
2

Nouveaux polycondensats greffés à perméabilité contrôlée : application à la purification d'un biocarburant par un procédé de séparation membranaire / New graft step-growth copolymers with controlled permeability : Application to biofuel purification by a membrane separation process

Wang, Miao 16 December 2014 (has links)
Ce travail a consisté en la synthèse et la caractérisation de nouveaux polycondensats poly(urée-imide)s (PUIs) greffés par une réaction de chimie "click" avec des nombres de greffons variables. Deux familles de matériaux ont été obtenues à partir d'un même PUI et de greffons de structures différentes mais de mêmes masses molaires : poly(méthoxy (diéthylène glycol) méthacrylate) (PMDEGMA) synthétisé par polymérisation radicalaire par transfert d’atome (ATRP) ; poly(hydroxyéthyl acrylate) (PHEA) préparé par Single Electron Transfer Living Radical Polymerization (SET-LRP). Ces matériaux ont ensuite été étudiés pour la purification du biocarburant éthyl tert-butyl éther (ETBE) par le procédé membranaire de pervaporation. Pour la séparation correspondante du mélange azéotropique ETBE/éthanol, les polycondensats avec des greffons PMDEGMA ont conduit à d’excellentes performances en extrayant l’éthanol de manière très sélective. La stratégie de greffage a permis d’augmenter fortement le flux tout en maintenant une excellente sélectivité et de pallier ainsi la limitation classique des polycondensats linéaires pour lesquels flux et sélectivité varient fortement de manière opposée. Les propriétés de ces polycondensats greffés ont été corrélées à leur morphologie particulière étudiée par MDSC et Synchrotron SAXS. Les greffons PHEA avec des groupes hydroxyle ont permis d'augmenter encore l'affinité pour l'éthanol. Cette affinité ayant dépassé les espérances avec des membranes trop gonflées par le mélange cible, les propriétés de sorption et de perméation de la seconde famille de copolymères greffés ont finalement étudiées pour le transport de l'eau, autre domaine de la perméabilité à forts enjeux industriels / This work deals with the synthesis and characterization of new graft step-growth copolymers poly(urea-imide)s (PUIs) by ‘click’ chemistry with variable graft amounts. Two families of materials were obtained from the same PUI and polymer grafts with different structures and the same molecular weights : poly(methoxy (diethylene glycol) methacrylate) (PMDEGMA) prepared by Atom Transfer Radical Polymerization (ATRP); poly(hydroxyethyl acrylate) (PHEA) obtained by Single Electron Transfer Living Radical Polymerization (SET-LRP). These materials were then investigated for the purification of the ethyl tert-butyl ether (ETBE) biofuel by the pervaporation membrane process. For the corresponding separation of the azeotropic mixture ETBE/ethanol, the copolymers with the PMDEGMA grafts showed excellent performances with very selective ethanol extraction. The grafting strategy enabled to increase the flux strongly while maintaining an excellent selectivity and thus overcame the classical limitation of linear step-growth copolymers, for which flux and selectivity strongly vary in opposite ways. The properties of the graft copolymers were correlated to their particular morphology characterized by MDSC and Synchrotron SAXS. The PHEA grafts with their hydroxyl groups enabled to further increase affinity for ethanol. This affinity having gone beyond expectation with a too strong membrane swelling in the targeted mixture, the sorption and permeability properties of the second series of graft copolymers were finally investigated for water transport, i.e. another permeability field with strong industrial stakes

Page generated in 0.1323 seconds