Spelling suggestions: "subject:"moteur aéronautique"" "subject:"coteur aéronautique""
1 |
Large-Eddy Simulation of constant volume combustion in a ground-breaking new aeronautical engine / Simulation aux Grandes Echelles de la combustion à volume constant dans une architecture de moteur aéronautique en ruptureExilard, Gorka 11 October 2018 (has links)
Au cours des dernières années, le transport aérien de passagers connaît un développement sans cesse croissant et continue ainsi d’accroire sa contribution aux émissions mondiale de CO2. Par conséquent, un effort commun entre les avionneurs est fait pour diminuer les émissions de CO2 et de polluants. Pour encourager cet effort, les réglementations deviennent de plus en plus drastiques en terme d'émissions et de polluants tels que le CO2, les NOx mais aussi le bruit. Ces nouvelles limitations sont à la fois définies à court et moyen-long termes pour inciter les motoristes à travailler sur les technologies de plus en plus efficientes.Pour concevoir des moteurs toujours plus performants tout en respectant ces réglementations à court terme, les motoristes travaillent sur l'optimisation de leurs technologies conventionnelles, en améliorant des leviers bien identifiés comme l'augmentation du taux de compression. Cependant, cette optimisation des turbomachines actuelles a déjà atteint un niveau de maturité très élevé. Il semble ainsi difficile de continuer indéfiniment leurs optimisations. Par conséquent, pour atteindre les objectifs à moyen-long terme, les motoristes sont dès aujourd'hui en train d'étudier des nouveaux systèmes propulsifs avancés comme les chambres de Combustion à Volume Constant (CVC) qui peuvent accroître le rendement thermique. Contrairement aux chambres de combustion traditionnelles, qui fonctionnent à flux continu, les chambres CVC opèrent de façon cyclique afin de créer un volume constant pendant la phase de combustion et libérer les gaz chauds dans les étages de turbines.Pendant cette thèse, une approche numérique permettant d'évaluer ce type de chambres est développée. Tout l'enjeu est de pouvoir étudier des chambre de combustion intégrant des parties mobiles, qui permettent de créer le volume constant dédié à la combustion tout en évitant les fuites à travers ces systèmes mobiles lors de l'élévation de la pression dans la chambre. Cette modélisation doit aussi prédire correctement les phases transitoires comme l'admission des gaz frais, qui pilote la phase de combustion. Cette étude utilise des objets immergés pour modéliser les parties mobiles. Les objectifs de cette thèse sont de rendre ces objets immergés imperméables et adapter la méthode aux différents modèles utilisés pour étudier les milieux réactifs tels que le modèle de combustion ECFM-LES ou encore l'injection liquide Lagrangienne utilisée pour résoudre l'injection du fuel.Dans cette étude, une nouvelle formulation est développée puis testée sur différents cas tests de plus en plus représentatifs des chambres CVC. Cette approche numérique est ensuite évaluée sur une chambre réel étudiée expérimentalement au laboratoire PPRIRME de Poitiers. Dans cette dernière étude, deux cas non réactifs permettent de comparer les évolutions de pression à deux endroits dans la dispositif expérimental, ainsi que les champs de vitesse au sein de la chambre de combustion, aux simulations réalisées. Pour ces cas complexes, l'utilisation des objets immergés permet de prédire les résultats expérimentaux à un coût attractif.Un des cas non réactif est ensuite carburé et allumé pour confronter l'évolution pression et les champs de vitesse dans la chambre de combustion des résultats numériques obtenus aux mesures expérimentales. L'approche numérique développée a permis d’enrichir les données expérimentales, d'analyser les variabilités cycle-à-cycle rencontrées au banc et d'identifier les leviers qui permettraient d'optimiser ce type d’architecture. / Over the past few years, aircrafts have become a common means of transport, thus continuously increasing their contribution to global CO2 emissions. Consequently, there is a common effort between aircraft manufacturers to reduce CO2 and pollutant emissions. To encourage this effort, regulations are becoming more and more stringent on the emissions and pollutants like CO2, NOx and noise. These regulations are both defined in the short and medium-long terms to urge aircraft manufacturers to work on more and more efficient technologies.In order to design more efficient engines while respecting the short term objectives, engine manufacturers are working on the improvement of conventional architectures by using well-known levers like the increase of the Overall Pressure Ratio (OPR). However, the optimization of the present turbomachinery has already reached a high level of maturity and it seems difficult to continuously enhance their performances. Consequently, to reach the medium-long term objectives, engine manufacturers are working on new advanced propulsion systems such as the Constant Volume Combustion (CVC) chambers, which can increase the thermal efficiency of the system. Contrary to present turbomachinery which are burning fresh gases continuously, CVC chambers operate cyclically so as to create the constant vessel dedicated to the combustion phase and to expand the burnt gases into turbine stages.In this PhD thesis, a numerical approach is developed to allow the evaluation of these kind of combustors. The challenge is to be able to evaluate CVC chambers by taking into account the moving parts which create the constant volume and avoid mass leakages through these moving parts during the increase of the combustion chamber pressure when the combustion occurs. This approach also has to correctly predict unsteady phases like the intake, which directly controls the combustion process.These moving parts are modeled with a Lagrangian Immersed Boundary (LIB) method .The main goals of this thesis is to make the LIB as airtight as possible and to render this approach compatible with the different models which are adapted to analyse reactive flows such as the ECFM-LES combustion model or Lagrangian liquid injection, used for fuel sprays. In this study, a new formulation is developed and tested on several test cases from very simple ones to cases more representative of CVC chambers.Then, this approach is evaluated on a real chamber experimentally analysed in PPRIME laboratory in Poitiers. Two non-reactive operating points are used to compare the experimental pressure at two positions in the apparatus and the experimental velocity fields in the combustion chamber with the numerical results. In this complex configuration, the LIB method allows the prediction of the experimental results with a low CPU cost. As in the experiment, one non-reactive case is carburized and ignited to compare the measured pressure and the velocity fields in the combustion chamber with the simulations. The proposed numerical approach allows the data enhancement of the experiment and then the analysis of the cycle-to-cycle variability encountered during the experimental measurements. Last but not least, this method enables the identification of the different levers that could decrease the variability and then could improve operability of this type of combustors.
|
2 |
Implementation of a coupled computational chain to the combustion chamber's heat transfer / Mise en oeuvre d'une chaîne de calcul couplé pour la thermique de chambre de combustionBerger, Sandrine 20 June 2016 (has links)
La conception des moteurs aéronautiques est soumise à de nombreuses contraintes telles que les gains de performance ou les normes environnementales de plus en plus exigeantes. Face à ces objectifs souvent contradictoires, les nouvelles technologies de moteur tendent vers une augmentation de la température locale et globale dans les étages chauds. En conséquence, les parties solides comme les parois du brûleur sont soumises à des niveaux de température élevés ainsi que d’importants gradients de température, tous deux critiques pour la durée de vie du moteur. Il est donc essentiel pour les concepteurs de caractériser précisément la thermique locale de ces systèmes. Aujourd’hui, la température de paroi est évaluée par des essais de coloration. Pour limiter ces essais relativement chers et complexes, des outils numériques haute fidélité capables de prédire la température de paroi des chambres de combustion sont actuellement développés. Cet exercice nécessite de considérer tous les modes de transfert de chaleur (convection, conduction et rayonnement) ainsi que la combustion au sein du brûleur. Ce problème multi-physique peut être résolu numériquement à l’aide de différentes approches numériques. La méthode utilisée dans ce travail repose sur une approche partitionnée qui inclut la résolution de l’écoulement turbulent réactif par un code de simulation aux grandes échelles (LES), un solveur radiatif basé sur la méthode aux ordonnées discrètes ainsi qu’ un code de conduction solide.Les diverses questions et difficultés liées à la répartition des ressources informatiques ainsi qu’à la méthodologie de couplage employée pour traiter les disparités d’échelles de temps et d’ espace présentes dans chacun des modes de transfert de chaleur sont discutées. La performance informatique des applications couplées est étudiée à travers un modèle très simplifié ainsi que sur une application industrielle. Les paramètres importants sont identifiés et des pistes potentielles d’amélioration sont proposées. La méthodologie de couplage thermique est ensuite étudiée du point de vue physique sur deux configurations distinctes. Pour commencer, l’équilibre thermique entre un fluide réactif et un solide est étudié pour une configuration académique d’accroche flamme. L’influence de la température de paroi de l’accroche flamme sur la stabilisation de flamme est mise en évidence sur des simulations fluideseul. Ces résultats indiquent trois états d’équilibre théorique différents. La pertinence physique de ces trois états est ensuite évaluée à l’aide de diverses simulations de transfert de chaleur conjugué réalisées pour différentes solutions initiales et conductivités solides. Les résultats indiquent que seulement deux états d’équilibre ont un sens physique et que la bifurcation entre les deux états possibles dépend à la fois de la condition initiale et de la conductivité solide. De plus, pour la gamme de paramètres testés, la méthodologie de couplage n’a pas d’effet sur les solutions obtenues. Une méthodologie similaire est ensuite appliquée à une chambre de combustion d’hélicoptère pour laquelle le rayonnement est de plus pris en compte. Diverses simulations sont présentées afin d’évaluer l’impact de chacun des processus de transfert de chaleur sur le champ de température : une simulation fluide-seul adiabatique de référence, de transfert de chaleur conjugué, d’interaction thermique fluide-rayonnement ainsi qu’une simulation incluant toutes les physiques. Ces calculs montrent la faisabilité d’un couplage LES/conduction solide dans un contexte industriel et fournissent de bonnes tendances de distribution de température. Pour finir, pour cette géométrie de brûleur et la condition d’opération simulée, les divers résultats montrent que le rayonnement joue un rôle important dans la distribution des températures de paroi. De ce fait, les comparaisons aux essais de coloration sont globalement en meilleur accord quand les trois modes de transfert sont pris en compte / The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, the solid parts encounter very high temperature levels and gradients that are critical for the engine lifespan. Combustion chamber walls in particular are subject to large thermal constraints. It is thus essential for designers to characterize accurately the local thermal state of such devices. Today, wall temperature evaluation is obtained experimentally by complex thermocolor tests. To limit such expensive experiments, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature. This specific thermal field however requires the consideration of all the modes of heat transfer (convection, conduction and radiation) and the heat production (through the chemical reaction) within the burner. The resolution of such a multi-physic problem can be done numerically through the use of several dedicated numerical and algorithmic approaches. In this manuscript, the methodology relies on a partitioned coupling approach, based on a Large Eddy Simulation (LES) solver to resolve the flow motion and the chemical reactions, a Discrete Ordinate Method (DOM) radiation solver and an unsteady solid conduction code. The various issues related to computer resources distribution as well as the coupling methodology employed to deal with disparity of time and space scales present in each mode of heat transfer are addressed in this manuscript. Coupled application high performance studies, carried out both on a toy model and an industrial burner configuration evidence parameters of importance as well as potential path of improvements. The thermal coupling approach is then considered from a physical point of view on two distinct configurations. First, one addresses the impact of the methodology and the thermal equilibrium state between a reacting fluid and a solid for a simple flame holder academic case. The effect of the flame holder wall temperature on the flame stabilization pattern is addressed through fluid-only predictions. These simulations highlight interestingly three different theoretical equilibrium states. The physical relevance of these three states is then assessed through the computation of several CHT simulations for different initial solutions and solid conductivities. It is shown that only two equilibrium states are physical and that bifurcation between the two possible physical states depends both on solid conductivity and initial condition.Furthermore, the coupling methodology is shown to have no impact on the solutions within the range of parameters tested. A similar methodology is then applied to a helicopter combustor for which radiative heat transfer is additionally considered. Different computations are presented to assess the role of each heat transfer process on the temperature field: a reference adiabatic fluid-only simulation, Conjugate Heat Transfer, RadiationFluid Thermal Interaction and fully coupled simulations are performed. It is shown that coupling LES with conduction in walls is feasible in an industrial context with acceptable CPU costs and gives good trends of temperature repartition. Then, for the combustor geometry and operating point studied, computations illustrate that radiation plays an important role in the wall temperature distribution. Comparisons with thermocolor tests are globally in a better agreement when the three solvers are coupled.
|
Page generated in 0.0475 seconds