Spelling suggestions: "subject:"motoneuronenerkrankung"" "subject:"motoneuronenerkrankungen""
1 |
Der Einfluss des Kalziumkanalagonisten R-Roscovitine auf die zelluläre Differenzierung von Motoneuronen eines Mausmodells für Spinale Muskelatrophie Typ 1 (SMA) / The effect of the calcium channel agonist R-Roscovitine on cellular differentiation of motoneurons from a mouse model for spinal muscular atrophy type 1 (SMA)Balk, Stefanie Margarete January 2020 (has links) (PDF)
Die spinale Muskelatrophie (SMA) ist eine monogenetische Erkrankung, bei der es durch den Verlust des SMN Proteins zur Degeneration der α-Motoneurone im Rückenmark kommt. Abhängig vom Schweregrad zeigen die Patienten bereits innerhalb der ersten Lebensmonate ausgeprägte Lähmungen der Skelettmuskulatur und eine Zwerchfellparese einhergehend mit einer reduzierten Lebenserwartung. Mithilfe von Mausmodellen für die SMA konnte gezeigt werden, dass der Motoneuronenverlust bei Smn-defizienten Mäusen mit Störungen der Neurotransmission an der motorischen Endplatte und mit Differenzierungsstörungen der Motoneurone einhergeht. Die Differenzierungs-störungen primärer Smn-defizienter Motoneurone sind eng gekoppelt mit einer verminderten Clusterbildung spannungsabhängiger Kalziumkanäle im distalen axonalen Bereich. Dies wiederum führt zu einer verminderten Frequenz spontaner Kalziumeinströme am Axonterminus und hat eine veränderte axonale Elongation zur Folge.
Es wurden folgende Aspekte in Bezug auf die Verstärkung und die Induktion spontaner Kalziumeinströme in Mausmodellen für spinale Muskelatrophien in dieser Arbeit adressiert:
1) Lassen sich spontane Kalziumeinströme in Smn-defizienten Motoneuronen durch die externe Applikation von Kalziumkanalagonisten verstärken?
2) Sind spontane Kalziumeinströme in primären Motoneuronen durch den Brain-derived-neurotrophic-factor (BDNF) induzierbar?
3) Zeigen primäre Motoneurone eines Mausmodells für spinale Muskelatrophie mit Ateminsuffizienz Typ 1 (SMARD1) ebenfalls veränderte Kalziumtransienten?
Die Ergebnisse meiner Arbeit zeigen, dass durch den Kalziumkanalagonisten R-Roscovitine die Frequenz der spontanen Kalziumeinströme im distalen Axon von Smn-defizienten Motoneuronen signifikant erhöht wird. Dies hat wiederum einen regulierenden Effekt auf die Differenzierung der SMA Motoneurone zur Folge. Smn-defiziente Motoneurone zeigen somit keine Unterschiede mehr in Bezug auf Axonlängen und Wachstumskegelflächen im Vergleich zu Kontrollzellen. Für R-
10
Roscovitine ist neben der agonistischen Wirkung am Kalziumkanal auch ein inhibitorischer Effekt auf die Cyclin-abhängige Kinase 5 beschrieben. Es konnte jedoch gezeigt werden, dass die erhöhten Kalziumtransienten unter der Behandlung mit R-Roscovitine durch eine direkte Bindung an die Cav2 Kalziumkanäle verursacht werden und nicht durch eine Cdk5 Blockade. Dafür spricht die schnelle und reversible Wirkung von R-Roscovitine, sowie die Aufhebung des R-Roscovitines Effekts bei gleichzeitiger Gabe des Cav2.2 Antagonisten ω-Conotoxin MVIIC.
Der zweite Aspekt dieser Arbeit behandelt den Einfluss der neurotrophen Faktoren BDNF, CNTF und GDNF auf die Kalziumtransienten am Wachstumskegel wildtypischer Motoneurone. Der Vergleich der neurotrophen Faktoren zeigt, dass nur BDNF eine induzierende Wirkung auf spontane Kalziumtransienten am Wachstumskegel hat.
Der letzte Abschnitt dieser Arbeit beschäftigt sich mit den Kalziumtransienten bei Motoneuronen aus dem Nmd2J (SMARD1) Mausmodell. Die SMARD1 gilt als eigenständige Form der spinalen Muskelatrophien mit unterschiedlicher Genetik und unterschiedlichen klinischen Merkmalen. Die Motoneurone weisen in Bezug auf die Kalziumtransienten keine Unterschiede zwischen Wildtyp und Nmd2J Mutante auf. Es ergibt sich somit kein Hinweis darauf, dass die Degeneration der Motoneurone bei der SMARD1 von einer Störung der Kalziumhomöostase im distalen axonalen Bereich ausgeht. / Spinal muscular atrophy (SMA) is a monogenetic disorder which is caused by the loss of the SMN Protein and leads to the degeneration of α-motoneurons. Within the first few months of life most patients are clinically affected with severe motor deficits of skeletal muscles and a diaphragm paralysis, going along with a reduced life expectancy depening on the degree of severity. With the aid of SMA mouse models it was shown that the loss of motoneurons with Smn deficiancy lies in an impaired neurotransmission of the motoneuron endplat leading to a differentiation disorder of the motoneurons. This differentiation disorder is strongly connected to a reduced cluster formation of voltage-dependent calcium channels in the distal axonal area. The impaired cluster formation in turn leads to a reduced frequency of spontanous calcium transients at the axon terminus, followed by an altered axonal elongation.
In this work the following aspects concerning the enhancement and induction of spontanous calcium transients in mouse models of spinal muscular atrophy were adressed:
1) Does the external application of calcium channel agonists increase spontanous calcium transients in Smn-deficient motoneurons?
2) Is the neurotrophic factor Brain-derived neurotrophic factor (BDNF) able to induce spontanous calcium transients in primary motoneurons?
3) Do primary motoneurons of a mouse model for spinal muscular atrophy with respiratory distress (SMARD1) show altered calcium transients as well?
The results of my work show that the calcium channel agonist R-Roscovitine significantly increases the frequency of spontanous calcium transients in growth cones of Smn-deficient motoneurons which in turn has a regulatory effect on the differentiation of SMA motoneurons. Smn-deficient motoneurons treated with R-Roscovitine do not show any differences concerning axon length and growth cone size compared to control cells. Apart from the agonist effect on the calcium channels, R-Roscovitine also has an inhibitory impact on the cyclin-dependant kinase 5. The results of this work show that the positive effect on the calcium
12
transients under R-Roscovitine treatment is because R-Roscovitine binds directly to the calcium channel rather than due to an inhibition of cdk5. Arguments supporting this idea are the rapid and reversible channel kinetics of R-Roscovitine. Plus, the effect of R-Roscovitine can be repealed when the Cav2 channal antagonist ω-conotoxin is given simultaneously.
In the second part of this work the influence of the neurotrophic factors BDNF, CNTF and GDNF on the calcium transients of wildtype motoneurons is investigated. Comparing these neurotrophic factors show that only BDNF has an impact on local calcium channel kinetics in growth cones of motoneurons.
The last part of this work deals with the investigation of calcium transients in motoneurons from the Nmd2J (SMARD1) mouse model. SMARD1 is an independent form of spinal muscular atrophies with different genetical and clinical aspects compared to proximal SMA. The results of this work show that Nmd2J motoneurons do not show any difference in growth cone calcium influx between wildtype and mutant. Thus, there is no indication that the degeneration of SMARD1 motoneurons has any pathophysiological similarities with motoneurons from the proximal SMA mouse model. Hence, there are also no indications that the reason for motoneuron degeneration in SMARD1 lies in an impaired calcium homeostasis in the distal axonal area.
|
Page generated in 0.0518 seconds