• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the Wind Climate in Mountain Valleys Using the MIUU Mesoscale Model / Modellering av vindklimatet i bergsdalar genom att använda MIUU-modellen

Juuso, Nikolaus January 2002 (has links)
High average wind speeds have been measured in many valleys. The reasons for these high winds are channelling effects of two physical origins, forced channelling and pressure driven channelling. In this study, the MIUU-model, a three-dimensional mesoscale model with a higher order closure, has been used to investigate these effects in idealised valleys. The simulations have been performed in both two- and three-dimensions with a multitude of conditions. The valley dimensions, as depth, width and length, have been changed in order to investigate the flow within the valley. The dependence of strength and direction of the geostrophic wind have also been examined. Most of the simulations are performed for wintertime conditions at high latitudes with low roughness. In addition, simulations representing summertime conditions are made to check the influence of the diurnal variation of incoming radiation and thermal stability. In the two-dimensional simulations the mean wind speed along the valley is found to be independent of the magnitude of the geostrophic wind (at least up to 10 ms-1) if the large-scale flow is perpendicular to the valley. In this case, only the pressure driven channelling effect is of importance. When the geostrophic wind is higher than10 ms-1, the valley winds are coupled to the ambient flow and gravity waves are affecting the results. The mean and maximum wind speeds are found to be a function of the valley depth. In a valley with a water body (a lake) at the bottom, the simulations gave higher within valley winds for lower water temperatures, which increases the stability. In the three-dimensional simulations, it is shown that the maximum valley winds are almost independent of the valley length. However, the mean valley wind speed is more affected. Furthermore, it was found that close to the area where the valley widens - towards the region with lower synoptic pressure - a wind maximum is found in all simulations. A simulation of the Torneträsk area was made to investigate the flow in a real topography. With geostrophic wind perpendicular to the valley, high wind speeds occur at low levels in accordance with measurements. For the conditions used, channelling effects dominated the within valley flow. / Sammanfattning av ”Modellering av vindklimatet i bergsdalar genom att använda MIUU-modellen”. Höga medelvindhastigheter har blivit uppmätta i många dalgångar. Skälen till att dessa vindar kan uppkomma är två olika kanaliseringstyper, tryckdriven - och tvingad kanalisering. I den här studien så har MIUU-modellen använts för att undersöka dessa effekter i olika typer av idealiserade dalgångar. Modellen är tredimensionell och använder sig av ett högre ordningens schema för att sluta ekvationssystemet rörande de turbulenta parametrarna. Simuleringarna har gjorts både i två och tre dimensioner med en mängd olika ingångsvärden. Dalgångens dimensioner, såsom djup, bredd och längd har ändrats och resultaten har jämförts för att kunna kartlägga vindfältet. Effekter av styrkan och riktningen på den geostrofiska vinden har också undersökts. De flesta simuleringarna är genomförda med vinterförhållanden på höga latituder och med låga värden på skrovligheten. Simuleringar med värden som ska representera sommarförhållanden, beträffande den inkommande strålningen och den termiska stabiliteten, är gjorda för att undersöka vindens dygnsvariation. De tvådimensionella simuleringarna ger att medelvinden längs dalgången är i det närmaste oberoende av den geostrofiska vinden styrka om den är riktad vinkelrätt mot dalen. I detta fall är bara tryckdriven kanalisering av betydelse. När den geostrofiska vinden är högre än 10 ms-1 blir vinden i dalgången mer direkt påverkat av gravitationsvågor som bildas över dalgången. Det är också framkommit att det finns ett beroende mellan max-medelvind och daldjup. I en dalgång med en en sjö i botten uppträder högre vindhastigheter speciellt för lägre vattentemperaturer. I de tredimensionella simuleringarna kan det ses att maxvinden är i det närmaste konstant oberoende dalgångslängd. Medelvinden däremot är mer påverkad och blir högre ju längre dalgången är. En annan slutsats som kan dras från de tredimensionella simuleringarna är att ett vindmax återfinns i anslutning till att dalgångens bredd ändras. Maximat är lokaliserat mot den sida av förträngningen som har ett lägre synoptiskt tryck. Simuleringar av Torneträskområdet är gjorda för att se hur vindfältet ser ut i verklig terräng. Med den geostrofiska vinden vinkelrät mot dalgången så uppträder höga vindhastigheter på låg nivå i dalgången vilket också är sett i mätningar. Under de simulerade förhållandena så dominerade kanalisering strömningen i dalgången.
2

Wintertime stable boundary-layer processes in Alpine valleys

Arduini, Gabriele January 2017 (has links)
Alpine valleys are rarely closed systems, implying that the atmospheric boundary layer of a particular valley section is influenced by the surrounding terrain and large-scale flows. A detailed characterisation and quantification of these effects is required in order to design appropriate parameterisation schemes for complex terrains. The focus of this work is to improve the understanding of the effects of surrounding terrain (plains, valleys or tributaries) on the heat and mass budgets of the stable boundary layer of a valley section, under dry and weak large-scale wind conditions. Numerical simulations using idealised and real frameworks are performed to meet this goal. Several idealised terrains (configurations) were considered: an infinitely long valley (i.e. two-dimensional), and upstream valleys opening either on a plain (valley-plain), on a wider valley (draining) or on a narrower valley (pooling). In three-dimensional valleys, two main regimes can be identified for all configurations: a transient regime, before the down-valley flow develops, followed by a quasi-steady regime, when the down-valley flow is fully developed. The presence of a downstream valley reduces the along-valley temperature difference, therefore leading to weaker down-valley flows. As a result, the duration of the transient regime increases compared to the respective valley-plain configuration. Its duration is longest for the pooling configuration. For strong pooling the along-valley temperature difference can reverse, forcing up-valley flows from the narrower towards the wider valley. In this regime, the average cooling rate at the valley-scale is found to be a maximum and its magnitude is dependent on the configuration considered. Therefore pooling and draining induce colder and deeper boundary layers than the respective valley-plain configurations. In the quasisteady regime the cooling rate is smaller than during the transient regime, and almost independent of the configuration considered. Indeed, as the pooling character is more pronounced, the warming contribution from advection to the heat budget decreases because of weaker down-valley flows, and so does the cooling contribution from the surface sensible heat flux. The mass budget of the valley boundary layer was found to be controlled by a balance between the convergence of downslope flows at the top of the boundary layer and the divergence of the down-valley flow along the valley axis, with negligible contributions of subsidence far from the valley sidewalls. The mass budget highlighted the importance of the return current above the down-valley flow, which may contribute significantly to the inflow of air at the top of the boundary layer. A case-study of a persistent cold-air pool event which occurred in February 2015 in the Arve River Valley during the intensive observation period 1 (IOP1) of the PASSY- 2015 field campaign, allowed us to quantify the effects of neighbouring valleys on the heat and mass budgets of a real valley atmosphere. The cold-air pool persisted as a result of warm air advection at the valley top, associated with the passage of an upper-level ridge over Europe. The contributions from each tributary valley to the mass and heat budgets of the valley atmosphere were found to vary from day to day within the persistent stage of the cold-air pool, depending on the large-scale flow. Tributary flows had significant impact on the height of the inversion layer and the strength of the cold-air pool, transporting a significant amount of mass within the valley atmosphere throughout the night. The strong stratification of the near-surface atmosphere prevented the tributary flows from penetrating down to the valley floor. The evolution of the large-scale flow during the episode had a profound impact on the near-surface circulation of the valley. The channelling of the large-scale flow at night, can lead to the decrease of the horizontal temperature difference driving the near-surface down-valley flow, favouring the stagnation of the air close to the ground.
3

Études du transport de la neige par le vent en conditions alpines : observations et simulations à l'aide d'un modèle couplé atmosphère/manteau neigeux / Blowing and drifting snow in alpine terrain : observations and modeling using a snowpack-atmosphere coupled system

Vionnet, Vincent 30 November 2012 (has links)
Le transport de la neige par le vent est une composante importante de l'interaction entre l'atmosphère et la cryosphère. En zone de montagne, il influence la distribution temporelle et spatiale de la couverture neigeuse au cours de l'hiver et a en premier lieu des conséquences sur le danger d'avalanche. La modélisation numérique de ce phénomène permet d'étudier les interactions complexes entre le manteau neigeux et le vent et d'en estimer les conséquences de manière distribuée. Dans ce contexte, cette thèse décrit le développement et l'évaluation d'un modèle couplé atmosphère/manteau neigeux dédié à l'étude du transport de la neige par le vent en zone de montagne reposant sur le modèle atmosphérique Meso-NH et le modèle détaillé de manteau neigeux Crocus. Le transport de la neige par le vent a été étudié sur le site expérimental du Col du Lac Blanc (massif des Grandes Rousses, France). Une base de données d'épisodes de transport couvrant dix hivers a tout d'abord été utilisée pour déterminer les caractéristiques principales de ces épisodes. Des simulations avec le modèle Crocus (non couplé à Meso-NH) ont ensuite montré qu'il était nécessaire de tenir compte des transformations mécaniques des grains de neige induites par le vent afin de simuler une évolution réaliste de la vitesse seuil de transport. Le site expérimental a également été le siège de deux campagnes de mesures en 2011 et 2012 visant à collecter de données de validation pour le modèle. Elles renseignent sur les conditions météorologiques près de la surface, sur les quantités de neige transportées et sur la localisation des zones d'érosion et de dépôt de la neige grâce à l'utilisation d'un laser terrestre. Le modèle de transport de neige par le vent Meso-NH/Crocus a été développé. Il intègre le transport de la neige en saltation et en suspension turbulente ainsi que la sublimation des particules de neige transportée. Un schéma à deux moments permet de simuler l'évolution spatiale et temporelle de la distribution en taille des particules. L'utilisation d'un schéma de couche limite de surface à l'interface entre Meso-NH et Crocus s'est révélé nécessaire pour représenter les forts gradients de concentration en particules de neige observés près de la surface. Meso-NH/Crocus est le premier modèle couplé atmosphère/manteau neigeux capable de simuler de manière interactive le transport de la neige par le vent en zone alpine. Meso-NH/Crocus a été évalué en relief réel grâce aux données collectées lors de la première campagne de mesure en 2011. La simulation d'un épisode de transport sans chute de neige simultanée montre que le modèle reproduit de manière satisfaisante les principales structures d'un écoulement en relief complexe ainsi que les profils verticaux de vitesse de vent et de flux de particules de neige en suspension près de la surface. En revanche, la résolution horizontale de 50 m est insuffisante pour reproduire avec précision la localisation des zones d'érosion et de dépôt autour du Col du Lac Blanc. La prise en compte de la sublimation réduit la quantité de neige déposée de l'ordre de 5%.Les techniques de descente d'échelle dynamique (grid nesting) ont ensuite été utilisées pour simuler un second épisode de transport avec chute de neige. L'augmentation de la résolution horizontale intensifie les contrastes de vitesse de vent entre versants au vent et sous le vent. En revanche, elle modifie peu les quantités et les structures spatiales des précipitations solides autour du Col du Lac Blanc. Lorsqu'il est activé, le transport devient la principale source d'hétérogénéités des accumulations neigeuses / Blowing and drifting snow are crucial components of the interaction between the cryosphere and the atmosphere. In mountainous areas, it affects the temporal and spatial distribution of snow depth throughout the winter season and influences avalanche formation. Numerical modeling offers a solution for studying the complex interaction between the snowpack and the wind field and to assess the related processes in a spatially distributed way. In this context, this PhD describes the development and the validation of a coupled snow/atmosphere model which is dedicated to the study of blowing and drifting snow in alpine terrain. The coupled model consists in the atmospheric model Meso-NH and the detailed snowpack model Crocus. Blowing and drifting snow have been monitored at the Col du Lac Blanc (Grandes Rousses range, French Alps) experimental site. A database consisting of blowing snow events observed over 10 years allowed us to identify the main features of these events. Numerical simulations using Crocus illustrated the necessity of taking the wind-dependence of snow grain characteristics into account in order to simulate satisfactorily the occurrence of blowing snow events. We also carried out two measurement campaigns at our experimental site in 2011 and 2012 in order to collect validation data for the model. This includes measurements of vertical profiles of wind speed and snow particle fluxes near the surface and the mapping of areas of erosion and deposition using terrestrial laser scanning. The coupled Meso-NH/Crocus model has been developed in order to account for blowing and drifting snow. It simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. In the atmosphere, a double-moment scheme allows the model to simulate the spatial and temporal evolution of the snow particle size distribution. The implementation of a surface boundary layer scheme at the interface between Meso-NH and Crocus turned out to be necessary to reproduce the strong vertical gradient of snow particle concentration near the surface. Meso-NH/Crocus is the first coupled snow-atmosphere model that can simulate snow transport in alpine terrain in an interactive way.Meso-NH/Crocus has been evaluated against data collected near Col du Lac Blanc during the first measurement campaign in 2011. The simulation of a blowing snow event without concurrent snowfall showed that the model captures the main structures of atmospheric flow in complex terrain, the vertical profile of wind speed and the snow particle fluxes. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed around Col du Lac Blanc. Blowing snow sublimation leads to a reduction in snow deposition of approximately 5%.We used downscaling techniques (grid nesting) to simulate a second blowing event with concurrent snowfall. The increase in horizontal resolution enhanced the contrast of wind speed between windward and leeward slopes. However, it only slightly affects the amount and the spatial pattern of snow precipitation around Col du Lac Blanc. When activated, blowing and drifting snow are the main sources of spatial variability of snow accumulation
4

Processus de la couche limite atmosphérique stable hivernale en vallée alpine / Wintertime Stable Boundary-Layer Processes in Alpine Valleys

Arduini, Gabriele 06 June 2017 (has links)
La dynamique de la couche limite atmosphérique d'une vallée alpine est influencée par le relief environnant et par l’écoulement de grande échelle qui la surmonte. La paramétrisation de cette circulation atmosphérique requiert donc de caractériser finement ces effets. C'est l’objectif de ce travail de thèse : comprendre l’influence du relief environnant une vallée sur les bilans de masse et de chaleur au travers d’une section de cette vallée, par conditions stables et sèches et lorsque le vent synoptique est faible mais non négligeable. Le travail s’appuie sur des simulations numériques.Plusieurs vallées idéalisées ont tout d’abord été considérées: une vallée infiniment longue (bidimensionnelle) et une vallée tridimensionnelle, qualifiée de supérieure, ouvrant soit sur une plaine (cas “vallée-plaine”), soit sur une autre vallée, qualifiée d’inférieure. Cette seconde vallée est soit plus large (cas “drainage”) ou plus étroite (cas “quasi-stagnation”).Dans les vallées tridimensionnelles, deux régimes principaux ont été identifiés, quelle que soit le cas considéré : un régime transitoire, avant que le vent de vallée (descendant) ne se développe, puis un régime quasi-stationnaire, quand le vent de vallée est complètement développé. La présence d’une vallée inférieure réduit la variation de température le long de la vallée, de sorte que le vent de vallée y est plus faible que dans le cas vallée-plaine. En conséquence, la durée du régime transitoire augmente et est maximum pour le cas quasi-stagnation. Lorsque la vallée inférieure est très étroite, la variation de température peut même changer de signe, conduisant à un vent de vallée montant, de la vallée inférieure vers la vallée supérieure. Durant ce régime transitoire, le taux de refroidissement moyenné sur le volume de la vallée est maximum, sa valeur dépendant du cas considéré. En conclusion, les cas drainage et quasi-stagnation conduisent à une couche limite dans la vallée supérieure plus froide et plus profonde que dans le cas vallée-plaine.Dans le régime quasi-stationnaire, le taux de refroidissement moyenné sur le volume de la vallée est plus faible que dans le régime transitoire et varie peu en fonction du cas considéré. En effet, lorsque la vallée inférieure devient plus étroite, le réchauffement lié aux effets advectifs diminue car la vitesse du vent de vallée diminue, de sorte que la contribution (refroidissante) du flux de chaleur sensible diminue également. La conservation de la masse dans la couche limite de la vallée supérieure est assurée par un équilibre entre la convergence des vents de pente au sommet de la couche limite (alimenté par un courant de retour au-dessus (et en sens inverse) du vent de vallée descendant) et la divergence du vent de vallée, les effets de subsidence loin des parois de la vallée jouant un rôle négligeable.Le cas réaliste de la vallée de l’Arve autour de Passy durant une période d’observation intensive de la campagne de mesures PASSY-2015 a permis de caractériser l’impact des vallées environnant Passy sur les bilans de masse et de chaleur dans la vallée. Une couche d’air froid persistante se forme en fond de vallée, suite à l’advection d’air chaud associée au passage d’une crête anticyclonique au-dessus de l’Europe. Les écoulements le long des vallées tributaires présentent une grande variabilité durant la phase persistante de l’épisode, dépendant de la variabilité de l’écoulement à grande échelle, et ont un impact majeur sur l’intensité de la couche d’air froid et la hauteur de l’inversion qui la surmonte. La forte stratification près du sol conduit à leur décollement au-dessus du fond de vallée, les empêchant d'y pénétrer. L’évolution de l’écoulement à grande échelle durant l’épisode a un profond impact sur la dynamique proche du fond de vallée. Durant la nuit en effet, la canalisation de cet écoulement réduit la variation de température le long de la vallée contrôlant le vent de vallée, favorisant la stagnation de l’air. / Alpine valleys are rarely closed systems, implying that the atmospheric boundary layer of a particular valley is influenced by the surrounding terrain and large-scale flows. A detailed characterisation and quantification of these effects is required in order to design appropriate parameterisation schemes for complex terrains. The focus of this work is to improve the understanding of the effects of surrounding terrain (plains, valleys or tributaries) on the heat and mass budgets of the stable boundary layer of a valley, under dry and weak large-scale wind conditions. Numerical simulations using idealised and real frameworks are performed to meet this goal. Several idealised terrains (configurations) were considered: an infinitely long valley (i.e. two-dimensional), and upstream valleys opening either on a plain (valley-plain), on a wider valley (draining) or on a narrower valley (pooling). In three-dimensional valleys, two main regimes can be identified for all configurations: a transient regime, before the down-valley flow develops, followed by a quasi-steady regime, when the down-valley flow is fully developed. The presence of a downstream valley reduces the along-valley temperature difference, therefore leading to weaker down-valley flows. As a result, the duration of the transient regime increases compared to the respective valley-plain configuration. Its duration is longest for pooling configuration. For strong pooling the along-valley temperature difference can reverse, forcing up-valley flows from the narrower towards the wider valley. In this regime, the volume-averaged cooling rate is found maximum and its magnitude dependent on the configuration considered. Therefore pooling and draining induce colder and deeper boundary layers than the respective valley-plain configurations. In the quasi-steady regime the cooling rate is smaller than in the transient regime, and almost independent of the configuration considered. Indeed, as the pooling character is more pronounced, the warming contribution from advection to the heat budget decreases because of weaker down-valley flows, and so does the cooling contribution from the surface sensible heat flux. The mass budget of the valley boundary layer was found to be controlled by a balance between the convergence of downslope flows at the boundary layer top and the divergence of down-valley flows along the valley axis, with negligible contributions of subsidence far from the slopes. The mass budget highlighted the importance of the return current above the down-valley flow, which may contribute significantly to the inflow of air at the top of the boundary layer. A case-study of a persistent cold-air pool event which occurred in February 2015 in the Arve River Valley during the intensive observation period 1 of the PASSY-2015 field campaign, allowed to quantify the effects of neighbouring valleys on the heat and mass budgets of a real valley atmosphere. The cold-air pool persisted because of warm air advection at the valley top, associated with the passage of an upper-level ridge over Europe. The contributions from each tributary valley to the mass and heat budgets of the valley atmosphere were found to vary from day to day within the persistent stage of the cold-air pool, depending on the large-scale flow. Tributary flows had significant impact on the height of the inversion layer and the strength of the cold-air pool, transporting a significant amount of mass within the valley atmosphere throughout the night. The strong stratification of the near-surface atmosphere prevented the tributary flows from penetrating down to the valley floor. The evolution of the large-scale flow during the episode had a profound impact on the near-surface circulation of the valley. The channelling of the large-scale flow at night, can lead to the decrease of the horizontal temperature difference driving the near-surface down-valley flow, favouring the stagnation of the air close to the ground.
5

Circulations à fine échelle et qualité de l'air hivernal dans une vallée alpine urbanisée / Fine scale wind dynamics and wintertime air quality in an urbanized alpine valley

Sabatier, Tiphaine 28 November 2018 (has links)
Les vallées alpines urbanisées sont régulièrement soumises à des épisodes de pollution aux particules fines, en particulier sous des conditions hivernales anticycloniques. Ces épisodes se développent du fait de la conjonction de l'augmentation des émissions et de la stratification de l'atmosphère qui inhibe le mélange vertical et isole l'atmosphère de vallée de la dynamique de grande échelle. Le transport des polluants devient alors principalement piloté par les écoulements locaux d'origine thermique. Ces écoulements se caractérisent par une forte dépendance aux spécificités locales de la zone et sont difficiles à représenter dans les modèles numériques de prévision du temps, tout comme les conditions stables qui les accompagnent. L'amélioration de la prévision des situations de pollution hivernale en zone de montagne nécessite donc une meilleure compréhension de la dynamique locale en condition stable. Cette thèse s'inscrit dans ce contexte et vise à améliorer la compréhension de la structure des circulations locales à l'échelle de la vallée. Pour cela, l'étude s'appuie sur les données acquises lors de la campagne Passy-2015 et sur des simulations numériques haute résolution réalisées avec le modèle Méso-NH. La campagne s'est déroulée durant l'hiver 2014-2015 dans le bassin de Passy, situé à proximité du Mont-Blanc et à la confluence de trois vallées. Les concentrations en PM10 observées dans ce bassin excédent régulièrement les seuils réglementaires et montrent des hétérogénéités marquées au sein du bassin et avec les vallées adjacentes. L'étude de la dynamique met en évidence le rôle des circulations locales vis-à-vis des disparités dans la distribution spatiale des polluants. En particulier, les écoulements dans le bassin sont organisés selon différentes strates et génèrent des niveaux de ventilation hétérogènes. En journée, les échanges de masse s'opèrent de manière préférentielle entre les segments de vallée les plus ensoleillés. [...] / Air quality issues are frequent in urbanized valleys, particularly in wintertime under anticyclonic conditions. Pollution episodes occur due to the combination of increased emissions and atmospheric stratification that inhibits vertical mixing and isolates the valley atmosphere from large-scale dynamics. The transport of pollutants then becomes mainly driven by local thermally driven flows that largely depend on local characteristics and are difficult to represent in numerical weather prediction models. Improving the forecasting of winter pollution situations in mountain areas therefore requires a better understanding of local dynamics under stable conditions. This thesis fall within this objective and aims at improving the understanding of local wind dynamics at valley scale. It is based on high-resolution numerical simulations performed with Méso-NH and data from the Passy-2015 field experiment that took place during the winter of 2014-2015 within the Passy basin, located near Mont-Blanc and at the confluence of three valleys. The PM10 concentrations observed in this basin regularly exceed the regulatory thresholds and show marked heterogeneities within the basin and with adjacent valleys. The wind dynamics study highlights local flow characteristics that are consistent with the PM10 heterogeneities observed within the valley. In particular, flows within the basin show a stratified structure and give rise to heterogeneous ventilation levels. During the day, mass exchanges preferentially occur between the sunniest valley sections. At night, the convergence of flows from tributary valleys, along with the local orography, induces a very heterogeneous flow structure on the vertical and horizontal in the Passy basin. These characteristics tend to reduce ventilation in the basin especially in the eastern sector, which is also the most polluted sector during wintertime episodes. As spring approaches, the increase of solar radiation balances inter-valley mass exchanges, thus reducing pollutant accumulation within the basin. The analysis of mechanisms controlling local circulations underlines the importance of fine scale characteristics of topography and surface (snow cover) that determine the distribution of energy received at the surface.

Page generated in 0.0479 seconds