• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An examination of Ksup(+) channels in the small intestinal epithelium

Walley, G. J. January 1984 (has links)
No description available.
2

Signální dráha Wnt v obnově a tumorigenezi střevního epitelu / Wnt signaling in intestinal homeostasis and tumorigenesis

Janečková, Lucie January 2014 (has links)
The canonical Wnt signaling pathway is one of the most important pathways involved in cell proliferation and differentiation. It is highly conserved in evolution and participates not only in embryonic development but also in adult tissue homeostasis. In the intestine, Wnt signaling is closely connected to maintenance of intestinal stem cells and renewal of the epithelia. Conversely, aberrant activation of the Wnt signaling pathway underlies different types of human diseases. Its constitutive activation results in neoplasia and specifically in development of colorectal cancer, which is the third most common malignancy in western world. The aim of this thesis was to uncover various aspects of the regulatory mechanisms of the Wnt/β-catenin signaling cascade. Furthermore, I headed to find novel Wnt pathway modulators and confirm their function in vivo. The results are presented in four publications. The first study examines murine Wnt proteins processing and the sequential order of Wnt post-translational modifications which are required for the secretion and signaling activity of the ligands. Next publication focuses on the gene Troy, which we identified as negative regulator of Wnt signaling. TROY was discovered as a Wnt target gene during DNA microarray profiling of human colorectal cancer cells....

Page generated in 0.1251 seconds