• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRACTS : um método para classificação de trajetórias de objetos móveis usando séries temporais

Santos, Irineu Júnior Pinheiro dos January 2011 (has links)
O crescimento do uso de sistemas de posicionamento global (GPS) e outros sistemas de localização espacial tornaram possível o rastreamento de objetos móveis, produzindo um grande volume de um novo tipo de dado, chamado trajetórias de objetos móveis. Existe, entretanto, uma forte lacuna entre a quantidade de dados extraídos destes dispositivos, dotados de sistemas GPS, e a descoberta de conhecimento que se pode inferir com estes dados. Um tipo de descoberta de conhecimento em dados de trajetórias de objetos móveis é a classificação. A classificação de trajetórias é um tema de pesquisa relativamente novo, e poucos métodos tem sido propostos até o presente momento. A maioria destes métodos foi desenvolvido para uma aplicação específica. Poucos propuseram um método mais geral, aplicável a vários domínios ou conjuntos de dados. Este trabalho apresenta um novo método de classificação que transforma as trajetórias em séries temporais, de forma a obter características mais discriminativas para a classificação. Experimentos com dados reais mostraram que o método proposto é melhor do que abordagens existentes. / The growing use of global positioning systems (GPS) and other location systems made the tracking of moving objects possible, producing a large volume of a new kind of data, called trajectories of moving objects. However, there is a large gap between the amount of data generated by these devices and the knowledge that can be inferred from these data. One type of knowledge discovery in trajectories of moving objects is classification. Trajectory classification is a relatively new research subject, and a few methods have been proposed so far. Most of these methods were developed for a specific application. Only a few have proposed a general method, applicable to multiple domains or datasets. This work presents a new classification method that transforms the trajectories into time series, in order to obtain more discriminative features for classification. Experiments with real trajectory data revealed that the proposed approach is more effective than existing approaches.
2

TRACTS : um método para classificação de trajetórias de objetos móveis usando séries temporais

Santos, Irineu Júnior Pinheiro dos January 2011 (has links)
O crescimento do uso de sistemas de posicionamento global (GPS) e outros sistemas de localização espacial tornaram possível o rastreamento de objetos móveis, produzindo um grande volume de um novo tipo de dado, chamado trajetórias de objetos móveis. Existe, entretanto, uma forte lacuna entre a quantidade de dados extraídos destes dispositivos, dotados de sistemas GPS, e a descoberta de conhecimento que se pode inferir com estes dados. Um tipo de descoberta de conhecimento em dados de trajetórias de objetos móveis é a classificação. A classificação de trajetórias é um tema de pesquisa relativamente novo, e poucos métodos tem sido propostos até o presente momento. A maioria destes métodos foi desenvolvido para uma aplicação específica. Poucos propuseram um método mais geral, aplicável a vários domínios ou conjuntos de dados. Este trabalho apresenta um novo método de classificação que transforma as trajetórias em séries temporais, de forma a obter características mais discriminativas para a classificação. Experimentos com dados reais mostraram que o método proposto é melhor do que abordagens existentes. / The growing use of global positioning systems (GPS) and other location systems made the tracking of moving objects possible, producing a large volume of a new kind of data, called trajectories of moving objects. However, there is a large gap between the amount of data generated by these devices and the knowledge that can be inferred from these data. One type of knowledge discovery in trajectories of moving objects is classification. Trajectory classification is a relatively new research subject, and a few methods have been proposed so far. Most of these methods were developed for a specific application. Only a few have proposed a general method, applicable to multiple domains or datasets. This work presents a new classification method that transforms the trajectories into time series, in order to obtain more discriminative features for classification. Experiments with real trajectory data revealed that the proposed approach is more effective than existing approaches.
3

TRACTS : um método para classificação de trajetórias de objetos móveis usando séries temporais

Santos, Irineu Júnior Pinheiro dos January 2011 (has links)
O crescimento do uso de sistemas de posicionamento global (GPS) e outros sistemas de localização espacial tornaram possível o rastreamento de objetos móveis, produzindo um grande volume de um novo tipo de dado, chamado trajetórias de objetos móveis. Existe, entretanto, uma forte lacuna entre a quantidade de dados extraídos destes dispositivos, dotados de sistemas GPS, e a descoberta de conhecimento que se pode inferir com estes dados. Um tipo de descoberta de conhecimento em dados de trajetórias de objetos móveis é a classificação. A classificação de trajetórias é um tema de pesquisa relativamente novo, e poucos métodos tem sido propostos até o presente momento. A maioria destes métodos foi desenvolvido para uma aplicação específica. Poucos propuseram um método mais geral, aplicável a vários domínios ou conjuntos de dados. Este trabalho apresenta um novo método de classificação que transforma as trajetórias em séries temporais, de forma a obter características mais discriminativas para a classificação. Experimentos com dados reais mostraram que o método proposto é melhor do que abordagens existentes. / The growing use of global positioning systems (GPS) and other location systems made the tracking of moving objects possible, producing a large volume of a new kind of data, called trajectories of moving objects. However, there is a large gap between the amount of data generated by these devices and the knowledge that can be inferred from these data. One type of knowledge discovery in trajectories of moving objects is classification. Trajectory classification is a relatively new research subject, and a few methods have been proposed so far. Most of these methods were developed for a specific application. Only a few have proposed a general method, applicable to multiple domains or datasets. This work presents a new classification method that transforms the trajectories into time series, in order to obtain more discriminative features for classification. Experiments with real trajectory data revealed that the proposed approach is more effective than existing approaches.

Page generated in 0.0701 seconds