Spelling suggestions: "subject:"Mr image deconstruction"" "subject:"Mr image areconstruction""
1 |
POCS Augmented CycleGAN for MR Image ReconstructionYang, Hanlu January 2020 (has links)
Traditional Magnetic Resonance Imaging (MRI) reconstruction methods, which may be highly time-consuming and sensitive to noise, heavily depend on solving nonlinear optimization problems. By contrast, deep learning (DL)-based reconstruction methods do not need any explicit analytical data model and are robust to noise due to its large data-based training, which both make DL a versatile tool for fast and high-fidelity MR image reconstruction. While DL can be performed completely independently of traditional methods, it can, in fact, benefit from incorporating these established methods to achieve better results. To test this hypothesis, we proposed a hybrid DL-based MR image reconstruction method, which combines two state-of-the-art deep learning networks, U-Net and Generative Adversarial Network with Cycle loss (CycleGAN), with a traditional data reconstruction method: Projection Onto Convex Sets (POCS). Experiments were then performed to evaluate the method by comparing it to several existing state-of-the-art methods. Our results demonstrate that the proposed method outperformed the current state-of-the-art in terms of higher peak signal-to-noise ratio (PSNR) and higher Structural Similarity Index (SSIM). / Electrical and Computer Engineering
|
Page generated in 0.1076 seconds