• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 15
  • 14
  • 12
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Užití biologických materiálů k náhradě tkání v plastické chirurgii / Use of biological materials for tissue substitution in plastic surgery

Měšťák, Ondřej January 2014 (has links)
Užití biologických materiálů k náhradě tkání v plastické chirurgii ! Abstrakt v angličtině Background: Biological meshes are biomaterials consisted of extracellular matrix and used in surgery particularly for hernia treatment or thoracic wall reconstruction. They are capable of vascularization, that decreases risk of infection, expecially when used in contaminated fields. This study compared the strength of incorporation and biocompatibility of two porcine-derived grafts (cross-linked and non-cross-linked) in a rat hernia model. In addition, we hypothesized that combination of extracellular matrices with autologous mesenchymal stem cells used for hernia repair would result in increased vascularization and increased strength of incorporation. Methods: Standardized 2 x 4 cm fascial defect was created in 42 Wistar rats and repaired with a cross-linked or a non-cross-linked graft either enriched or non-enriched with stem cells. The rats were sacrificed 3, 6 and 12 months later. The strength of incorporation, vascularization, cellular invasion, foreign body reaction and capsule formation were evaluated. Results: Comparison of stem cell enriched and non-enriched groups showed no significant differences in the capsule thickness, foreign body reaction, cellularization or vascularization. In the non-cross-linked...
32

Assessment of High Purity Mesenchymal Stromal Cells Derived Extracellular Vesicles Presenting NRP1 Show Functional Suppression of Activated Immune Cells

Gobin, Jonathan 04 January 2022 (has links)
Background: The focus of this study was to investigate how producing human bone marrow (hBM) derived mesenchymal stromal cell (MSC) extracellular vehicles (EVs) in a high purity isolation system would affect their established characterization criteria and address the validity of these methods of EV production. Additionally, we set out to functionally characterize the hBM-MSC-EVs for their identified immunomodulatory ability while also assessing the presence of novel MSC-EV marker NRP1 identified by our group to further affirm its validity as a functional MSC-EV identity marker. Methods: Each hBM-MSC-EV donor was cultured in a hollow-fiber bioreactor system in non-stimulating serum/xeno-free conditions for 25 days to produce EVs persistently under quiescent conditions to characterize the hBM-MSC-EVs in their native form. EVs were isolated by traditional PEG-based precipitation for preliminary characterization to monitor bioreactor production wherein they were characterized using multimodal tangential flow filtration coupled with fast protein liquid chromatograph (FPLC) size exclusion/high-affinity purifications to obtain the final highly purified EV sample. Additionally, functional analysis of their immunomodulatory ability, EVs and MSCs were incubated with activated peripheral blood mononuclear cells (PBMCs) as an in-vitro model to evaluate their potency. Results: The hBM-MSC-EVs produced from the bioreactor system showed consistent characterization in accordance with the MISEV2018 establish criteria. We were also able to demonstrate their functional ability by observing statistically significantly immunomodulatory ability of activated PBMCs equivalent to native MSC ability. We were also able to validate the present of NRP1 on all hBM-MSC-EV samples produced confirming its validity as a MSC-EV marker. Conclusion: The significance of the results obtained from this study confirms the production of MSC-EV using a bioreactor and high purity isolation for obtaining consistent MSC-EVs for downstream investigation. Additionally, we were able to demonstrate the significance of MSC-EVs on MSC signaling for immunomodulation by showing equivalent functional potency when tested in-vitro. These results contribute to further understanding the biological attributes of MSC-EVs and contribute to the validation of currently established characterization guidelines.
33

Membrane protein mechanotransduction : computational studies and analytics development

Dahl, Anna Caroline E. January 2014 (has links)
Membrane protein mechanotransduction is the altered function of an integral membrane protein in response to mechanical force. Such mechanosensors are found in all kingdoms of life, and increasing numbers of membrane proteins have been found to exhibit mechanosensitivity. How they mechanotransduce is an active research area and the topic of this thesis. The methodology employed is classical molecular dynamics (MD) simulations. MD systems are complex, and two programs were developed to reduce this apparent complexity in terms of both visual abstraction and statistical analysis. Bendix detects and visualises helices as cylinders that follow the helix axis, and quantifies helix distortion. The functionality of Bendix is demonstrated on the symporter Mhp1, where a state is identified that had hitherto only been proposed. InterQuant tracks, categorises and orders proximity between parts of an MD system. Results from multiple systems are statistically interrogated for reproducibility and significant differences at the resolution of protein chains, residues or atoms. Using these tools, the interaction between membrane and the Escherichia coli mechanosensitive channel of small conductance, MscS, is investigated. Results are presented for crystal structures captured in different states, one of which features electron density proposed to be lipid. MD results supports this hypothesis, and identify differential lipid interaction between closed and open states. It is concluded that propensity for lipid to leave for membrane bulk drives MscS state stability. In a subsequent study, MscS is opened by membrane surface tension for the first time in an MD setup. The gating mechanism of MscS is explored in terms of both membrane and protein deformation in response to membrane stretch. Using novel tension methodology and the longest MD simulations of MscS performed to date, a molecular basis for the Dashpot gating mechanism is proposed. Lipid emerges as an active structural element with the capacity to augment protein structure in the protein structure-function paradigm.

Page generated in 0.0432 seconds