• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson Quartzite, British Columbia, Canada

Hutto, Andrew Paul 2012 May 1900 (has links)
Middle-Late Ordovician Mt. Wilson Quartzite, southern British Columbia, Canada, is a supermature quartz arenite deposited in shallow marine-marginal marine environments on the Early Paleozoic western Laurentian passive margin. Facies-stacking patterns indicate the Mt. Wilson Quartzite is an unconformity bounded, 2nd-order depositional sequence, containing two 3rd-order sequences, and numerous parasequences. Detrital zircon age spectra of six samples of the Mt. Wilson Quartzite have numerous peaks that are unique to Middle to Late Ordovician quartz arenites of western Laurentia. The main peaks, 1800-2000 Ma, 2000-2200 Ma, and 2300-2400 Ma are interpreted to have been derived from basement rocks that were exposed east of the study area: Trans-Hudson Orogeny (1800-2000 Ma), Taltson Orogen (1800-2000 Ma), Buffalo Head Terrane (2000-2400 Ma), Paleoproterozoic crust (2000-2400 Ma), and the Wopmay Terrane (2000-2400 Ma). It is likely that these areas were sourced by local rivers and tributaries draining the Transcontinental Arch and delivered sediment to the deposition location of the Mt. Wilson Quartzite. While longshore transport was a viable distribution method for sediment along the passive margin, it is unlikely that the Peace River Arch (located northwest of the Mt. Wilson Quartzite) was its sole point source; rather it is more likely that there were multiple sediment sources for these western Laurentian quartz arenites. Temporal changes in provenance indicate different areas of basement rock were exposed throughout the deposition of the Mt. Wilson Quartzite, most likely reflecting long-term flooding of North America. The potential for spatial changes in provenance remains unsolved.

Page generated in 0.0224 seconds