Spelling suggestions: "subject:"auffinden arbital method"" "subject:"auffinden 0rbital method""
1 |
Development and application of Muffin-Tin Orbital based Green’s function techniques to systems with magnetic and chemical disorderKissavos, Andreas January 2006 (has links)
Accurate electronic structure calculations are becoming more and more important because of the increasing need for information about systems which are hard to perform experiments on. Databases compiled from theoretical results are also being used more than ever for applications, and the reliability of the theoretical methods are of utmost importance. In this thesis, the present limits on theoretical alloy calculations are investigated and improvements on the methods are presented. A short introduction to electronic structure theory is included as well as a chapter on Density Functional Theory, which is the underlying method behind all calculations presented in the accompanying papers. Multiple Scattering Theory is also discussed, both in more general terms as well as how it is used in the methods employed to solve the electronic structure problem. One of the methods, the Exact Muffin-Tin Orbital method, is described extensively, with special emphasis on the slope matrix, which energy dependence is investigated together with possible ways to parameterize this dependence. Furthermore, a chapter which discusses different ways to perform calculations for disordered systems is presented, including a description of the Coherent Potential Approximation and the Screened Generalized Perturbation Method. A comparison between the Exact Muffin-Tin Orbital method and the Projector Augmented-Wave method in the case of systems exhibiting both compositional and magnetic disordered is included as well as a case study of the MoRu alloy, where the theoretical and experimental discrepancies are discussed. The thesis is concluded with a short discussion on magnetism, with emphasis on its computational aspects. I further discuss a generalized Heisenberg model and its applications, especially to fcc Fe, and also present an investigation of the competing magnetic structures of FeNi alloys at different concentrations, where both collinear and non-collinear magnetic structures are included. For Invar-concentrations, a spin-flip transition is found and discussed. Lastly, I discuss so-called quantum corrals and possible ways of calculating properties, especially non-collinear magnetism, of such systems within perturbation theory using the force theorem and the Lloyd’s formula.
|
2 |
A first principles study of the thermodynamics of phase separating systems -The examples RhPd and AlZn-Johansson, Jimmy January 2009 (has links)
<p>A screened GPM approach in an EMTO-CPA framework was investigated in order to study its ability of describing transition temperatures in phase separating systems, i. e. systems giving either a random or a cluster structure depending on the temperature and the relative concentration of the ingoing atoms of the binary alloy used for the study. A motivation for the study is that the method works well for ordering systems, i. e. systems giving either a random or ordered structure dependent on the temperature and the relative concentration of the components in the binary alloy. Thereby is it of interest to find out the methods capacity in phase separating systems. The so called GPM potentials derived in the approach were applied in statistical Monte Carlo simulations for this purpose. The systems chosen for the investigation were the RhPd and the AlZn binary alloy systems. For both systems the method showed acceptable accuracy when properties as lattice parameter and mixing enthalpy were calculated. The quality of the derived GPM potentials has also been checked by calculating ordering energy for different ordered structures; directly from first principles calculations and from the GPM approach. The results were in acceptable agreement and thereby indicating that the GPM potentials were reliable. The transition temperatures in the RhPd phase diagram, derived by the statistical Monte Carlo simulations showed anyway deviation from experimental results. The error in the predictions might be due to the existing concentration dependencies in the GPM potentials.The conclusion from this study is that the Monte Carlo scheme might be inconvenient in order to handle the concentration dependencies seen in the GPM potentials.</p>
|
3 |
A first principles study of the thermodynamics of phase separating systems -The examples RhPd and AlZn-Johansson, Jimmy January 2009 (has links)
A screened GPM approach in an EMTO-CPA framework was investigated in order to study its ability of describing transition temperatures in phase separating systems, i. e. systems giving either a random or a cluster structure depending on the temperature and the relative concentration of the ingoing atoms of the binary alloy used for the study. A motivation for the study is that the method works well for ordering systems, i. e. systems giving either a random or ordered structure dependent on the temperature and the relative concentration of the components in the binary alloy. Thereby is it of interest to find out the methods capacity in phase separating systems. The so called GPM potentials derived in the approach were applied in statistical Monte Carlo simulations for this purpose. The systems chosen for the investigation were the RhPd and the AlZn binary alloy systems. For both systems the method showed acceptable accuracy when properties as lattice parameter and mixing enthalpy were calculated. The quality of the derived GPM potentials has also been checked by calculating ordering energy for different ordered structures; directly from first principles calculations and from the GPM approach. The results were in acceptable agreement and thereby indicating that the GPM potentials were reliable. The transition temperatures in the RhPd phase diagram, derived by the statistical Monte Carlo simulations showed anyway deviation from experimental results. The error in the predictions might be due to the existing concentration dependencies in the GPM potentials.The conclusion from this study is that the Monte Carlo scheme might be inconvenient in order to handle the concentration dependencies seen in the GPM potentials.
|
Page generated in 0.2898 seconds