• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design Upgrades, Reliability Testing and Implementation of Engineering Grade Thermoplastics in Prusa MMU2s

Kannoth, Ajith January 2020 (has links)
This paper studies the two aspects of current problems that plagues the Prusa i3 MK3sprinters in possession of JTH and how to resolve them; to be able to get a reliable printoutputs from engineering grade materials apart from conventional materials like PLAand PETG. The second aspect being the implementation of multi material module 2.0S,hereafter referred to as MMU2s successfully by analyzing and testing the current modi-cations and upgrades currently in the community and suggest any further modications,if required, both in terms of hardware and software which is further discussed in theupcoming sections. At present, there are numerous design upgrades and modicationsover the stock parts in the community which claim to iron out the reliability issues ofthe multi material unit. But, the success rates of these modications and upgrades varywidely. We tend to look at some of these modications which helps in eliminating theissues associated with the unit while getting it to produce results in a consistent and reliablemanner. The engineering grade thermoplastics which the university plan to use werealso taken into account to implement in the printers once the MMU2s setup was testedfor reliability. The objective also to create a successful prole sets by tweaking variousparameters in the slicing software for the aforementioned engineering grade materials sothat a ready-to-print prole is available for the corresponding material. During the course of project work, the reliability of the multi material unit was increasedby upgrading few of the components such as idler barrel and selector. Fine tuningof software parameters led to the error free running of the MMU unit by which extensivetesting was possible. Furthermore, engineering grade thermoplastics was able to betested and implemented on the current setup by making use of these software and hardwarechanges. Finally, extensive testing of the multi material unit was done coupled withengineering grade thermoplastics which yielded successful results and the congurationsettings saved for future use in the university.
2

Vergleich magnetischer Eigenschaften herkömmlicher und mittels 3D-Multimaterialdruck hergestellter Werkstoffe

Trnka, Nikolaus, Rudolph, Johannes, Werner, Ralf 28 February 2020 (has links)
In diesem Beitrag werden die magnetischen Eigenschaften von ferromagnetischen Proben, welche mittels des neuen 3D-Multimaterialdruckverfahrens (3DMMD) hergestellt wurden, mit herkömmlichen Magnetkreismaterialien verglichen. Dazu wird zunächst die Technologie des Druckverfahrens sowie das Messprinzip und der Versuchsstand beschrieben. Im Weiteren wird ein Überblick über die Materialentwicklung gegeben und die Messergebnisse diskutiert. Es folgt die Betrachtung relevanter Einflüsse bei der Herstellung von Magnetkreisen sowie der Vergleich der Messergebnisse verschiedener Materialien. / In this paper, the magnetic properties of ferromagnetic samples produced using the new 3D multi-material printing process (3DMMD) are compared with conventional magnetic circuit materials. First the technology of the printing process as well as the measuring principle and the test bench are described. Furthermore, an overview of the material development is given and the measurement results are discussed. This is followed by the consideration of relevant influences in the production of magnetic circuits and the comparison of the measurement results of different materials.
3

Návrh 3D tiskárny s dvojicí tiskových hlav / Design of 3D printers with a pair of printheads

Halamíček, Lukáš January 2017 (has links)
The master thesis deals with design of multi material FDM 3D printer. In the first part, current market situation and possible principles of multi material printing are described. Possible variants of individual construction nodes are described in the next part and then the selected variant is processed into a design solution. The benefit of this thesis is a proposal of solution for the automatic printing head exchange, which is practically not concerned by printer manufacturers.

Page generated in 0.1235 seconds