• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 19
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Integrated investigation of impact-induced noise and vibration in vehicular drivetrain systems

Gnanakumarr, Max Mahadevan January 2004 (has links)
This thesis highlights one of the most significant concerns that has preoccupied drivetrain engineers in recent times, namely drivetrain clonk. Clonk is an unacceptable audible sound, which is accompanied by a tactile drivetrain response. This may occur under several different driving conditions. Many drivetrain NVH concerns are related to impact loading of subsystems down-line of engine. These concerns are induced by power torque surge through engagement and disengagement processes, which may propagate through various transmission paths as structural waves. The coincidence of these waves with the acoustic modes of sub-system components leads to audible responses, referred to as clonk. The approach usually undertaken and reported in literature is either purely theoretical or constitutes experimental observation of vehicle conditions. A few research workers have reported rig-based investigations, but not under fully dynamic conditions with controlled and reproducible impulsive action. The research reported in this thesis combines experimental and numerical investigation of high frequency behaviour of light truck drivetrain systems, when subjected to sudden impulsive action, due to driver behaviour. The problem is treated as a multi-physics interactive phenomenon under transient conditions. The devised numerical method combines multi-body dynamics, structural modal analysis, impact dynamics in lash zones and acoustic analysis within an overall investigation framework. A representative drivetrain system rig is designed and implemented, and controlled tests simulating driver behaviour undertaken. The combined numerical predictions and experimental noise and vibration monitoring has highlighted the fundamental aspects of drivetrain behaviour. Good agreement is' also found between the detailed numerical approach and the experimental findings. Novel methods of measurement such as Laser Doppler Vibrometery have been employed. Simultaneous measurements of vibration and noise radiation confirm significant elasto-acoustic coupling at high impact energy levels. One of the major finds of the thesis is the complex nature of the clonk signal, being a combination of accelerative and ringing noise, with the latter also comprising of many other lower energy content as observed in the case of transmission rattle and bearing-induced responses. Therefore, the link between rattle and clonk, long suspected, but not hitherto shown has been confirmed in the thesis. Another major find of particular commercial interest is the insignificant contribution of torsional damping devices such as dual mass flywheels upon the accelerative component of the clonk response.
22

The interaction of tyre and anti-lock braking in vehicle transient dynamics

Jaiswal, Manish January 2009 (has links)
The thesis presents an intermediate modelling approach to study transient behaviour of vehicle systems, with emphasis put on simplified yet accurate representation of important system elements. A representative non-linear vehicle model is developed in MA TLAB/Simulink environment, where non-linear characteristics of tyre, suspension and braking system are included to capture the dynamic behaviour of a vehicle under transient conditions. The novel aspect of this work is the application of a representative full vehicle-tyre-ABS integrated set-up to study the complicated interaction between tyre and anti-lock braking, under a range of demanding operating conditions, including combined cornering and braking. The modelling methodology involves development of low end vehicle models, based on the Newton-Euler formulation. Subsequently, an intermediate vehicle model is devised, where more details are incorporated such as additional DOF to capture the sprung mass motion in space, along with its non-linear interactions with the un-sprung masses, large angle effects, kinematics of steering/wheels and an appropriate tyre model suitable for transient manoeuvres. Particular attention is paid to the suspension system modelling, through inclusion of non-linear effects in springs, dampers, bump-stops, and anti-roll bars, along with the jacking and anti-dive effects using the virtual work method. The model also incorporates a hydraulic brake model, based on the reduced order brake system dynamics for realistic simulation of the braking manoeuvres. A complex multi-body ADAMS/Chassis model, with much greater level of detail, has also been established to extensively compare and enhance the realistic behaviour of the intermediate vehicle model. During the simulation exercise, the intermediate vehicle model has shown good agreement with the complex ADAMS model, thus justifying the accurate representation of vehicle.non-linear characteristics, particularly the suspension system. The realistic behaviour of the vehicle model is further ascertained with a reliable GPS enabled test vehicle, by performing number of manoeuvres on test tracks, including combined cornering and braking. A representative 4-channel conventional ABS system is modelled and integrated in the intermediate vehicle model. The ABS adopts generic peak seeking approach, employing wheel deceleration and brake slip as control variables. External braking inputs, in form of stepped pressure pulses, are also separately used to represent the transient braking system dynamics. In the current work, different transient tyre models based on the single point contact approach and using Magic Formula steady-state characteristics are applied, while studying the influence of their dynamic behaviour on the ABS system. By employing a representative ABS system in a multi-body vehicle model and considering the particularly demanding situation of combined braking I cornering, it is shown that the models which are adequate for pure braking might struggle when the complicated full vehicle dynamics are excited. It is shown that the first order relaxation length approach may not be sufficient to fully satisfy the requirements of an ABS braking, especially if the relaxation length is not modelled as a variable dependent on tyre slip. In comparison, the modelling approach, where the carcass compliances and contact patch properties are explicitly represented, can handle the oscillatory tyre behaviour associated with ABS braking, in a far more accurate manner. In comparison to the earlier studies, which were mostly conducted for straight-line braking, this thesis stresses the fact that the tyre behaviour can be influenced by the complex interaction of handling and braking, and hence the effect should be captured while investigating or evaluating the performance of a tyre model in relation with ABS simulation.
23

An integrated multibody dynamics computational framework for design optimization of wind turbine drivetrains considering wind load uncertainty

Li, Huaxia 01 December 2016 (has links)
The objective of this study is to develop an integrated multibody dynamics computational framework for the deterministic and reliability-based design optimization of wind turbine drivetrains to obtain an optimal wind turbine gear design that ensures a target reliability under wind load and gear manufacturing uncertainties. Gears in wind turbine drivetrains are subjected to severe cyclic loading due to variable wind loads that are stochastic in nature. Thus, the failure rate of drivetrain systems is reported to be relatively higher than the other wind turbine components. It is known in wind energy industry that improving reliability of drivetrain designs is one of the key issues to make wind energy competitive as compared to fossil fuels. Furthermore, a wind turbine is a multi-physics system involving random wind loads, rotor blade aerodynamics, gear dynamics, electromagnetic generator and control systems. This makes an accurate prediction of product life of drivetrains challenging and very limited studies have been carried out regarding design optimization including the reliability-based design optimization (RBDO) of geared systems considering wind load and manufacturing uncertainties. In order to address these essential and challenging issues on design optimization of wind turbine drivetrains under wind load and gear manufacturing uncertainties, the following issues are discussed in this study: (1) development of an efficient numerical procedure for gear dynamics simulation of complex multibody geared systems based on the multi-variable tabular contact search algorithm to account for detailed gear tooth contact geometry with profile modifications or surface imperfections; (2) development of an integrated multibody dynamics computational framework for deterministic and reliability-based design optimization of wind turbine drivetrains using the gear dynamics simulation software developed in (1) and RAMDO software by incorporating wide spatiotemporal wind load uncertainty model, pitting gear tooth contact fatigue model, and rotor blade aerodynamics model using NREL AeroDyn/FAST; and (3) deterministic and reliability-based design optimization of wind turbine drivetrain to minimize total weight of a drivetrain system while ensuring 20-year reliable service life with wind load and gear manufacturing uncertainties using the numerical procedure developed in this study. To account for the wind load uncertainty, the joint probability density function (PDF) of 10-minute mean wind speed (V₁₀) and 10-minute turbulence intensity (I₁₀) is introduced for wind turbine drivetrain dynamics simulation. To consider wide spatiotemporal wind uncertainty (i.e., wind load uncertainty for different locations and in different years), uncertainties of all the joint PDF parameters of V₁₀, I₁₀ and copula are considered, and PDF for each parameter is identified using 249 sets of wind data. This wind uncertainty model allows for the consideration of a wide range of probabilistic wind loads in the contact fatigue life prediction. For a given V₁₀ and I₁₀ obtained from the stochastic wind model, the random time-domain wind speed data is generated using NREL TurbSim, and then inputted into NREL FAST to perform the aerodynamic simulation of rotor blades to predict the transmitted torque and speed of the main shaft of the drivetrain that are sent to the multibody gear dynamics simulation as an input. In order to predict gear contact fatigue life, a high-fidelity gear dynamics simulation model that considers the detailed gear contact geometry as well as the mesh stiffness variation needs to be developed to find the variability of maximum contact stresses under wind load uncertainty. This, however, leads to a computationally intensive procedure. To eliminate the computationally intensive iterative online collision detection algorithm, a numerical procedure for the multibody gear dynamics simulation based on the tabular contact search algorithm is proposed. Look-up contact tables are generated for a pair of gear tooth profiles by the contact geometry analysis prior to the dynamics simulation and the contact points that fulfill the non-conformal contact condition and mesh stiffness at each contact point are calculated for all pairs of gears in the drivetrain model. This procedure allows for the detection of gear tooth contact in an efficient manner while retaining the precise contact geometry and mesh stiffness variation in the evaluation of mesh forces, thereby leading to a computationally efficient gear dynamics simulation suited for the design optimization procedure considering wind load uncertainty. Furthermore, the accuracy of mesh stiffness model introduced in this study and transmission error of gear tooth with tip relief are discussed, and a wind turbine drivetrain model developed using this approach is validated against test data provided in the literature. The gear contact fatigue life is predicted based on the gear tooth pitting fatigue criteria and is defined by the sum of the number of stress cycles required for the fatigue crack initiation and the number required for the crack to propagate from the initial to the critical crack length based on Paris-Erdogan equation for Mode II fracture. All the above procedures are integrated into the reliability-based design optimization software RAMDO for design optimization and reliability analysis of wind turbine drivetrains under wind load and manufacturing uncertainties. A 750kW GRC wind turbine gearbox model is used to perform the design optimization and the reliability analysis. A deterministic design optimization (DDO) is performed first using an averaged joint PDF of wind load to ensure a 20-year service life. To this end, gear face width and tip relief (profile modification) are selected as design variables and optimized such that 20-year fatigue life is ensured while minimizing the total weight of drivetrains. It is important to notice here that an increase in face width leads to a decrease in the fatigue damage, but an increase in total weight. On the other hand, the tip relief has almost no effect on the total weight, but it has a major impact on the fatigue damage. It is shown in this study that the optimum tip relief allows for lowering the greatest maximum shear stresses on the tooth surface without relying heavily on face width widening to meet the 20-year fatigue life constraint and it leads to reduction of total drivetrain weight by 8.4%. However, if only face width is considered as design variable, total weight needs to be increased by 4.7% to meet the 20-year fatigue life constraint. Furthermore, the reliability analysis at the DDO optimum design is carried out considering the large spatiotemporal wind load uncertainty and gear manufacturing uncertainty. Local surrogate models at DDO optimum design are generated using Dynamic Kriging method in RAMDO software to evaluate the gear contact fatigue damage. 49.5% reliability is obtained at the DDO optimum design, indicating that the probability of failure is 50.5%, which is as expected for the DDO design. RBDO is, therefore, necessary to further improve the reliability of the wind turbine drivetrain. To this end, the sampling-based reliability analysis is carried out to evaluate the probability of failure for each design using the Monte Carlo Simulation (MCS) method. However, the use of a large number of MCS sample points leads to a large number of contact fatigue damage evaluation time using the 10-minute multibody drivetrain dynamics simulation, resulting in the RBDO calculation process being computational very intensive. In order to overcome the computational difficulty resulting from the use of high-fidelity wind turbine drivetrain dynamics simulation, intermediate surrogate models are created prior to the RBDO process using the Dynamic Kriging method in RAMDO and used throughout the entire RBDO iteration process. It is demonstrated that the RBDO optimum obtained ensures the target 97.725 % reliability (two sigma quality level) with only 1.4 % increase in the total weight from the baseline design with 8.3 % reliability. This result clearly indicates the importance of incorporating the tip relief as a design variable that prevents larger increase in the face width causing an increase in weight. This, however, does not mean that a larger tip relief is always preferred since an optimum tip relief amount depends on stochastic wind loads and an optimum tip relief cannot be found deterministically. Furthermore, accuracy of the RBDO optimum obtained using the intermediate surrogate models is verified by the reliability analysis at the RBDO optimum using the local surrogate models. It is demonstrated that the integrated design optimization procedure developed in this study enables the cost effective and reliable design of wind turbine drivetrains.
24

Vehicle ride under transient conditions using combined on-road testing and numerical analysis

Abidin, Mohd Azman Zainul January 2005 (has links)
The thesis outlines a hierarchical modelling methodology for investigation in vehicle dynamics, in particular for combined ride and handling manoeuvres. The methodology involves the use of detailed multi-degrees of freedom models of vehicles with the inclusion of sources of non-linearity, using a multi-body approach, based on Lagrangian dynamics for constrained systems. It also includes the use of simpler and task-specific models, formulated in Newton-Euler approach. These simpler models with lower degrees of freedom, but with appropriate level of detail are more efficient in the study of specific, but non-trivial problems such as transient behaviour of vehicles in combined ride and handling, as encountered in many routine daily manoeuvres. The modelling methodology is supported by careful vehicle testing, both for validation of the proposed approach, and assessment of the extent of applicability of simple, intermediate and multi-degrees of freedom full-vehicle models. Certain important vehicle handling and ride characteristics in pitch plane dynamics, roll behaviour, vehicle body bounce and combination of these have been studied, as well as the effectiveness of restraining action of chassis elements, such as the semileading and trailing arms for passive control of vehicle squat and dive motions, arising from acceleration from coast to drive and deceleration/brake of vehicle from drive to coast. Combined pitch and bounce motions have been studied when negotiating speed traps such as bumps, which also combine with significant body roll when single event obstacles of this kind are introduced. The novelty of the research is in the detailed integrative numerical-experimental approach, and the development of intermediate models that adequately predict vehicle behaviour under steady and non-steady conditions for a wide range of ride and handling manoeuvres. The investigations have culminated in a significant number of findings of practical use, particularly the ineffectiveness of anti-squat and dive features when combined pitch and bounce motions limit the usefulness of these devices. On the contrary, excessive roll dynamic behaviour of the vehicle is effectively palliated by the anti-roll bar, even under complex combined pitch, roll and body bounce such as those experienced in negotiating single event speed bumps. Good agreement is found between the predictions of the intermediate model and those of the multi-body model and the actual vehicle tests, particularly for pitch and bounce dynamics.
25

Über Wechselwirkungen in Elastomerlagern und deren Einfluss auf die Elastokinematik einer Vorderradaufhängung

Lohse, Christian 24 February 2016 (has links) (PDF)
Als elastische Koppelglieder üben Elastomere im Fahrwerk maßgeblichen Einfluss auf die Elastokinematik der Radaufhängung und damit auf die Radstellgrößen aus. Bereits einfache zylindrische Probekörper zeigten in der Vergangenheit Veränderlichkeit der Federsteifigkeiten bei mehrachsiger Belastung auf. Daraus ließ sich ableiten, dass das Bauteilverhalten von zylindrischen Elastomerkörpern, bzw. Fahrwerklagern, schwer vorhersagbar ist und dieser Effekt durch die Verwendung komplexer Geometrien zusätzlich beeinflusst wird. Eigens im Rahmen dieser Arbeit entwickelte Prüfstände ermöglichten die Untersuchung von statischen, mehrachsigen Belastungen sowie zyklischen, einachsigen Belastungen zweier Fahrwerklager einer typischen Vorderradaufhängung, dem Mc-Pherson-Federbein. Für beide Lagertypen wurden derart signifikante Federsteifigkeitsänderungen unter mehrachsiger Belastung beobachtet, dass ein Einfluss auf die Elastokinematik sicher schien. Unter einachsiger, zyklischer Belastung bestätige sich, dass einfache rheologische Ersatzmodelle, wie der Ansatz nach Kelvin-Voigt für eine Modellierung des viskoelastischen Materialverhaltens weiterhin Gültigkeit besitzen. Ein in einem Mehrkörpersimulationsprogramm erstelltes Gesamtfahrzeugmodell zeigte zunächst für die Auslegung der Prüfstände relevante Beanspruchungen in den Fahrwerklagern auf und diente weiterhin als Grundlage für die Untersuchung des Einflusses von Wechselwirkungen auf die Radstellgrößen. Dazu behandelt die Arbeit die Modellierung eines neuen Fahrwerklagermodells innerhalb dieser MKS-Umgebung. Dieses Modell bietet dem Nutzer die Möglichkeit für eine Abbildung von Wechselwirkungen an zylindrischen, zyklisch beanspruchten Bauteilen. Ein spezielles Fahrmanöver zeigte den Einfluss der Wechselwirkungen auf die Radstellgrößen auf und zeigte, dass die Berücksichtigung von Wechselwirkungen für eine Fahrwerkauslegung relevant ist. Darüber hinaus wurde mit kommerziell verfügbaren Materialmodellen für die Beschreibung es Materialverhaltens von Elastomeren innerhalb der Finite-Elemente-Methode aufgezeigt, dass bei einachsiger Belastung die Federsteifigkeiten der Fahrwerklager auf Grundlage der in der Literatur üblichen Auslegungsgleichungen näherungsweise abgebildet werden können, jedoch für mehrachsige Spannungszustände keine hinreichende Aussage über das Bauteilverhalten getroffen werden kann. Hier wurde weiterer Forschung- bzw. Erweiterungsbedarf an den FE-Programmen aufgezeigt.
26

Multi-body dynamics analysis and experimental investigations for the determination of the physics of drive train vibro-impact induced elasto-acoustic coupling

Menday, M. T. January 2003 (has links)
A very short and disagreeable audible and tactile response from a vehicle driveline may be excited when the throttle is abruptly applied or released, or when the clutch is rapidly engaged. The condition is most noticeable in low gear and in slow moving traffic, when other background engine and road noise levels are low. This phenomenon is known as clonk and is often associated with the first cycle of shuffle response, which is a low frequency longitudinal vehicle movement excited by throttle demand. It is often reported that clonk may coincide with each cycle of the shuffle response, and multiple clonks may then occur. The problem is aggravated by backlash and wear in the drivetrain, and it conveys a perception of low quality to the customer. Hitherto, reported investigations do not reveal or discuss the mechanism and causal factors of clonk in a quantitative manner, which would relate the engine impulsive torque to the elastic response of the driveline components, and in particular to the noise radiating surfaces. Crucially, neither have the issues of sensitivity, variability and non-linearity been addressed and published. It is also of fundamental importance that clonk is seen as a total system response to impulsive torque, in the presence of distributed lash at the vibro-elastic impact sites. In this thesis, the drivetrain is defined as the torque path from the engine flywheel to the road wheels. The drivetrain is a lightly damped and highly non-linear dynamic system. There are many impact and noise emitting locations in the driveline that contribute to clonk, when the system is subjected to shock torque loading. This thesis examines the clonk energy paths, from the initial impact to many driveline lash locations, and to the various noise radiating surfaces. Both experimental and theoretical methods are applied to this complex system. Structural and acoustic dynamics are considered, as well as the very important frequency couplings between elastic structures and acoustic volumes. Preliminary road tests had indicated that the clonk phenomenon was a, very short transient impact event between lubricated contacts and having a high frequency characteristic. This indicated that a multi-body dynamics simulation of the driveline, in conjunction with a high frequency elasto-acoustic coupling analysis, would be required. In addition, advanced methods of signal analysis would be required to handle the frequency content of the very short clonk time histories. These are the main novelties of this thesis. There were many successful outcomes from the investigation, including quantitative agreement between the numerical and experimental investigations. From the experimental work, it was established that vehicle clonk could be accurately reproduced on a driveline rig and also on a vehicle chassis dynamometer, under controlled test conditions. It then enabled Design of Experiments to be conducted and the principal causal factors to be identified. The experimental input and output data was also used to verify the mathematical simulation. The high frequency FE analysis of the structures and acoustic cavities were used to predict the dynamic modal response to a shock input. The excellent correlation between model and empirical data that was achieved, clearly established the clonk mechanism in mathematical physics terms. Localised impact of meshing gears under impulsive loads were found to be responsible for high frequency structural wave propagation, some of which coupled with the acoustics modes of cavities, when the speed of wave propagation reached supersonic levels. This finding, although previously surmised, has been shown in the thesis and constitutes a major contribution to knowledge.
27

Artificial Intelligence Aided Rapid Trajectory Design in Complex Dynamical Environments

Ashwati Das (6638018) 14 May 2019 (has links)
<div><div>Designing trajectories in dynamically complex environments is challenging and can easily become intractable via solely manual design efforts. Thus, the problem is recast to blend traditional astrodynamics approaches with machine learning to develop a rapid and flexible trajectory design framework. This framework incorporates knowledge of the spacecraft performance specifications via the computation of Accessible Regions (ARs) that accommodate specific spacecraft acceleration levels for varied mission scenarios in a complex multi-body dynamical regime. Specifically, pathfinding agents, via Heuristically Accelerated Reinforcement Learning (HARL) and Dijkstra's algorithms, engage in a multi-dimensional combinatorial search to sequence advantageous natural states emerging from the ARs to construct initial guesses for end-to-end transfers. These alternative techniques incorporate various design considerations, for example, prioritizing computational time versus the pursuit of globally optimal solutions to meet multi-objective mission goals. The initial guesses constructed by pathfinding agents then leverage traditional numerical corrections processes to deliver continuous transport of a spacecraft from departure to destination. Solutions computed in the medium-fidelity Circular Restricted Three Body (CR3BP) model are then transitioned to a higher-fidelity ephemeris regime where the impact of time-dependent gravitational influences from multiple bodies is also explored.</div><div><br></div><div>A broad trade-space arises in this investigation in large part due to the rich and diverse dynamical flows available in the CR3BP. These dynamical pathways included in the search space via: (i) a pre-discretized database of known periodic orbit families; (ii) flow-models of these families of orbits/arcs `trained' via the supervised learning algorithms Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs); and, finally (iii) a free-form search that permits selection of both chaotic and ordered motion. All three approaches deliver variety in the constructed transfer paths. The first two options offer increased control over the nature of the transfer geometry while the free-form approach eliminates the need for a priori knowledge about available flows in the dynamical environment. The design framework enables varied transfer scenarios including orbit-orbit transport, s/c recovery during contingency events, and rendezvous with a pre-positioned object at an arrival orbit. Realistic mission considerations such as altitude constraints with respect to a primary are also incorporated.</div></div>
28

Über Wechselwirkungen in Elastomerlagern und deren Einfluss auf die Elastokinematik einer Vorderradaufhängung

Lohse, Christian 13 January 2016 (has links)
Als elastische Koppelglieder üben Elastomere im Fahrwerk maßgeblichen Einfluss auf die Elastokinematik der Radaufhängung und damit auf die Radstellgrößen aus. Bereits einfache zylindrische Probekörper zeigten in der Vergangenheit Veränderlichkeit der Federsteifigkeiten bei mehrachsiger Belastung auf. Daraus ließ sich ableiten, dass das Bauteilverhalten von zylindrischen Elastomerkörpern, bzw. Fahrwerklagern, schwer vorhersagbar ist und dieser Effekt durch die Verwendung komplexer Geometrien zusätzlich beeinflusst wird. Eigens im Rahmen dieser Arbeit entwickelte Prüfstände ermöglichten die Untersuchung von statischen, mehrachsigen Belastungen sowie zyklischen, einachsigen Belastungen zweier Fahrwerklager einer typischen Vorderradaufhängung, dem Mc-Pherson-Federbein. Für beide Lagertypen wurden derart signifikante Federsteifigkeitsänderungen unter mehrachsiger Belastung beobachtet, dass ein Einfluss auf die Elastokinematik sicher schien. Unter einachsiger, zyklischer Belastung bestätige sich, dass einfache rheologische Ersatzmodelle, wie der Ansatz nach Kelvin-Voigt für eine Modellierung des viskoelastischen Materialverhaltens weiterhin Gültigkeit besitzen. Ein in einem Mehrkörpersimulationsprogramm erstelltes Gesamtfahrzeugmodell zeigte zunächst für die Auslegung der Prüfstände relevante Beanspruchungen in den Fahrwerklagern auf und diente weiterhin als Grundlage für die Untersuchung des Einflusses von Wechselwirkungen auf die Radstellgrößen. Dazu behandelt die Arbeit die Modellierung eines neuen Fahrwerklagermodells innerhalb dieser MKS-Umgebung. Dieses Modell bietet dem Nutzer die Möglichkeit für eine Abbildung von Wechselwirkungen an zylindrischen, zyklisch beanspruchten Bauteilen. Ein spezielles Fahrmanöver zeigte den Einfluss der Wechselwirkungen auf die Radstellgrößen auf und zeigte, dass die Berücksichtigung von Wechselwirkungen für eine Fahrwerkauslegung relevant ist. Darüber hinaus wurde mit kommerziell verfügbaren Materialmodellen für die Beschreibung es Materialverhaltens von Elastomeren innerhalb der Finite-Elemente-Methode aufgezeigt, dass bei einachsiger Belastung die Federsteifigkeiten der Fahrwerklager auf Grundlage der in der Literatur üblichen Auslegungsgleichungen näherungsweise abgebildet werden können, jedoch für mehrachsige Spannungszustände keine hinreichende Aussage über das Bauteilverhalten getroffen werden kann. Hier wurde weiterer Forschung- bzw. Erweiterungsbedarf an den FE-Programmen aufgezeigt.
29

Construction of Ballistic Lunar Transfers in the Earth-Moon-Sun System

Stephen Scheuerle Jr. (10676634) 07 May 2021 (has links)
<p>An increasing interest in lunar exploration calls for low-cost techniques of reaching the Moon. Ballistic lunar transfers are long duration trajectories that leverage solar perturbations to reduce the multi-body energy of a spacecraft upon arrival into cislunar space. An investigation is conducted to explore methods of constructing ballistic lunar transfers. The techniques employ dynamical systems theory to leverage the underlying dynamical flow of the multi-body regime. Ballistic lunar transfers are governed by the gravitational influence of the Earth-Moon-Sun system; thus, multi-body gravity models are employed, i.e., the circular restricted three-body problem (CR3BP) and the bicircular restricted four-body problem (BCR4BP). The Sun-Earth CR3BP provides insight into the Sun’s effect on transfers near the Earth. The BCR4BP offers a coherent model for constructing end-to-end ballistic lunar transfers. Multiple techniques are employed to uncover ballistic transfers to conic and multi-body orbits in cislunar space. Initial conditions to deliver the spacecraft into various orbits emerge from Periapse Poincaré maps. From a chosen geometry, families of transfers from the Earth to conic orbits about the Moon are developed. Instantaneous equilibrium solutions in the BCR4BP provide an approximate for the theoretical minimum lunar orbit insertion costs, and are leveraged to create low-cost solutions. Trajectories to the <i>L</i>2 2:1 synodic resonant Lyapunov orbit, <i>L</i>2 2:1 synodic resonant Halo orbit, and the 3:1 synodic resonant Distant Retrograde Orbit (DRO) are investigated.</p>
30

Dynamical Flow Characteristics in Response to a Maneuver in the L1 or L2 Earth-Moon Region

Colton D Mitchell (15347518) 25 April 2023 (has links)
<p>National security concerns regarding cislunar space have become more prominent due to</p> <p>the anticipated increase in cislunar activity. Predictability is one of these concerns. Cislunar</p> <p>motion is difficult to predict because it is chaotic. The chaotic nature of cislunar motion is</p> <p>pronounced near the L1 and L2 Lagrange points. For this reason, among others, it is likely</p> <p>that a red actor (an antagonist) would have its cislunar spacecraft perform a maneuver in</p> <p>one of the aforementioned vicinities to reach some cislunar point of interest. This realization</p> <p>unveils the need to ascertain some degree of predictability in the motion resulting from a</p> <p>maneuver performed in the L1 or L2 region. To investigate said motion, impulsive maneuvers</p> <p>are employed on the L1 and L2 Lagrange points and on L1 and L2 Lyapunov orbits in the</p> <p>model that is the circular restricted three-body problem. The behavior of the resultant</p> <p>trajectories is analyzed to understand how the magnitude and direction of a maneuver in</p> <p>said regions affect the behavior of the resultant trajectory. It is found that the direction</p> <p>of such maneuvers is particularly influential with respect to said behavior. Regarding both</p> <p>the L1 and L2 regions, certain maneuver directions yield certain behaviors in the resultant</p> <p>trajectory over a wide range of maneuver magnitudes. This understanding is informative to</p> <p>cislunar mission design.</p>

Page generated in 0.0579 seconds