• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource Allocation Frameworks for Multi-carrier-based Cognitive Radio Networks with full and Statistical CSI / Allocation de ressources pour les réseaux de radio cognitive basés sur les modulations multi-porteuses avec connaissance exacte et statistique des canaux

Denis, Juwendo 29 June 2016 (has links)
Durant les deux dernières décennies, l'ubiquité et la prolifération des technologies sans fil ont entrainé une forte augmentation de demande de la ressource spectrale. Face à la croissance incessante du nombre d'utilisateurs désirant accéder au réseau, il existera un risque assez élevé de congestion au niveau de l'accès au spectre radio. Pour pallier à ce problème, il devient essentiel de recourir à un partage dynamique du spectre au détriment du mode de gestion statique de la bande de fréquence. L'avènement de la radio cognitive répond pertinemment aux besoins actuels car elle permet à des utilisateurs dits secondaires d'accéder à des bandes de fréquence qui restent affectées à des utilisateurs dits primaires. Les différents algorithmes proposés ont été examinés par simulation sur des scenarios qui illustrent les résultats théoriques obtenus. Les résultats de simulations démontrent que les méthodes proposées permettaient de trouver des solutions qui sont très proches de l'optimale.Au regard de certaines caractéristiques inhérentes aux modulations à porteuses multiples, celles-ci sont très appropriées à la couche physique des réseaux de radio cognitive. Cependant, le manque de coopération active entre les utilisateurs primaires et secondaires est susceptible d'entrainer une communication désynchronisée entre les système primaires et secondaires. En conséquence, une allocation judicieuse en termes de ressource radio et de contrôle de puissance devient impérative pour combattre l'effet négatif propre aux transmissions asynchrones qui devient aussi un défi de taille pour la conception et la mise en œuvre des réseaux de radio cognitive. Dans cette thèse, nous nous intéressons à l'étude de certaines problématiques d'allocation de ressources pour un réseau désynchronisé de radio cognitive qui utilise des modulations à porteuses multiples. Dans un premier temps, nous supposons que la connaissance des informations de canal est disponible à l'émission. Nous étudions des techniques permettant d'optimiser l'allocation de ressources afin de minimiser la somme des puissances émises au niveau des utilisateurs secondaires. Nous nous intéressons aussi à la conception d'algorithmes permettant d'optimiser l'efficacité énergétique des utilisateurs secondaires. La seconde partie de la thèse concerne l'optimisation de la fonction d'utilité des utilisateurs secondaires en tenant compte des contraintes de probabilité de coupure des utilisateurs primaires et secondaires. Cette probabilité de coupure découle de l'hypothèse de la connaissance de la distribution du canal au niveau des stations de base secondaires. Les différents algorithmes proposés ont été examinés par simulation afin d'illustrer les résultats théoriques obtenus. Les résultats de simulations démontrent que les méthodes proposées permettent de trouver des solutions qui sont très proches de l'optimale. / The ubiquity and proliferation of wireless technology and services considerably lead to a sharp increase in the number of individuals requiring access to wireless networks in recent decades. The growing number of mobile subscribers results into a dramatic increasing request for more radio spectrum. Consequently, underutilized yet scarce radio spectrum becomes overwhelmingly crowded. Therefore, the advent of new radio resource management paradigm capable of switching from static licensed spectrum management to dynamic spectrum access is of great importance. Cognitive radio (CR) emerged as a promising technology capable of enhancing the radio spectrum by permitting unlicensed users known as secondary users to coexist with primary users. Meanwhile, multi-carrier modulations that can efficiently overcome the detrimental effect of multipath fading in a wireless channel are very appealing for the physical layer of cognitive radio networks. However, the lack of cooperation between primary and secondary users may lead to asynchronous transmission and consequently result into inter-carrier interferences. Judicious resource allocation frameworks need to be designed in order to maintain the coexistence between primary and secondary users. Guaranteeing secondary users' quality of service (QoS), while ensuring that interferences generated to the primary users are tolerable, poses significant challenges for the design of wireless cognitive radio networks. This dissertation focuses on resource, i.e. subcarrier and power, allocation for multi-carrier-based downlink cognitive radio networks under perfect or statistical channel state information (CSI) with secondary users interact either cooperatively or competitively. Firstly, the problem of margin adaptive and energy-efficiency optimization are investigated considering perfect CSI at the secondary users' side. Secondly, assuming statistical CSI available at the secondary users, we address the problem of utility maximization under primary and secondary outage constraints. We provide some near-optimal resource allocation schemes to tackle the aforementioned problems. The findings and proposed frameworks can eventually be used for performance assessment and design of practical cognitive radio networks.
2

On Physical Layer Abstraction Modeling for 5G and Beyond Communications

Anwar, Waqar 09 November 2021 (has links)
This thesis aims to abstract the physical layer (PHY) performance of current and upcoming technologies, so that, their suitability for various use cases and scenarios could be evaluated within an affordable time. For the said purpose, a new effective SINR mapping technique eEESM along with the dynamic optimization of the fitting parameter is proposed. The mapping accuracy of proposed eEESM techniques is analyzed and compared against the other state-of-the-art methods in the doubly selective channel. The results show that the proposed technique is more accurate and map closest to the reference packet error rate (PER) curves. Moreover, the mapping error of eEESM is the lowest for all considered MCSs. The justification for its better performance is the tighter symbol error rate (SER) approximation used to derive effective SINR and the proposed optimization approach. The main purpose of using PLA instead of full PHY simulations is to reduce simulation time. Therefore, a novel concept is presented to abstract PHY performance depending on the time and frequency selectivity of the channel. This further reduces the number of computations required to estimate performance using PLA. To demonstrate the gain in terms of simulation time, the computation complexity of PLA is compared against full PHY simulations. Results show that PLA is roughly 1000 to 1000000 times faster (depending on the abstracted fading conditions) compared to the PHY simulator. The effective SINR mapping approach is then further extended for future candidate multi-carrier techniques (i.e., OFDM, DFT-s-OFDM, GFDM, OTFS), which could be adopted by the upcoming technologies. For this purpose, the received SINR of symbols received through these multi-carrier techniques is derived. The resultant received SINR also considers the impact of ICI due to Doppler. Subsequently, the received SINR of symbols is mapped to effective SINR considering the selectivity of the channel. By comparing the effective SINR, OTFS outperforms other techniques. The reason for the better performance of OTFS is due to the spread of symbol energy over time and frequency, which results in higher effective SINR due to higher diversity. Furthermore, evaluation results show that the proposed PLA can accurately model the performance of these multi-carrier techniques under various fading conditions. Multi-connectivity is another enhancement being considered for future technologies, as an enabler for ultra-reliable communications under harsh channel conditions. Therefore, multi-connectivity communications are also studied in this thesis. Specifically, the frequency domain multi-connectivity networks are presented. To fully exploit frequency diversity under frequency selective channels, the subcarrier-based link combing scheme is proposed. The earlier derived received SINR is then extended for the state-of-the-art link combining schemes, i.e., SC, EGC, and MRC. The multi-connectivity gain in terms of the average received SINR is derived and compared for the above-mentioned combining schemes. To abstract the performance of multi-connectivity communications, the post-combined effective SINR mapping is proposed, where effective SINR represents the combined performance of connected links. The developed PLA performance is validated against the PHY simulations for the case of MRC. Results reveal that with the increase in multi-connectivity order, the RMSE error decreases due to the decrease in the variance of mapping SINRs. In the end, various applications of PLA are demonstrated. The developed multi-carrier PLAs are used to compare the performance of multi-carrier techniques under various fading conditions. Results depict that PER of multi-carrier techniques generally decreases with the increase in time or frequency selectivity, given that, the ideal channel estimation, ICI, and inter-symbol interference (ISI) cancellation is used. The multi-connectivity evaluation results depict that with the increase in channel selectivity higher diversity gain could be achieved. Besides, the proposed subcarrier-wise combining scheme achieves better performance compared to the traditional link combining approach. The next PLA application demonstrated is the performance comparison of V2X technologies, i.e., IEEE~802.11p, LTE-V2V, IEEE~802.11bd, and NR-V2X, in an Urban NLOS communications scenario. It is observed that 802.11bd outperforms other technologies in terms of PER and packet reception ratio (PRR). Its better performance is due to lower ICI compared to LTE-V2X and NR-V2X, and due to the use of LDPC codes compared to 802.11p. In contrast, NR-V2X outperforms other technologies in terms of data rates and packet inter-arrival time. The last PLA application shown is the link adaptation for single-link and multi-connectivity communications. In single-link communication, the performance of various PLA techniques is compared in terms of achieved data rates and outage probability against the case of perfect CQI. The CQI based on the proposed eEESM technique improves the data rates and reliability of the link, compared to other schemes. Further, in the case of multi-connectivity, the post-combined effective SINR mapping proposed in this thesis is used for link adaptation in terms of both MCS selection and adapting the number of links. The proposed scheme optimizes multi-connectivity data rates while using the lowest possible number of links required for the desired quality of service.
3

Timing Offset And Frequency Offset Estimation In An OFDM System

Prabhakar, A 07 1900 (has links) (PDF)
No description available.

Page generated in 0.1119 seconds