Spelling suggestions: "subject:"multidimensional limiter"" "subject:"multidimensional imiter""
1 |
Accurate Residual-distribution Schemes for Accelerated Parallel ArchitecturesGuzik, Stephen Michael Jan 12 August 2010 (has links)
Residual-distribution methods offer several potential benefits over classical methods, such as a means of applying upwinding in a multi-dimensional manner and a multi-dimensional positivity property. While it is apparent that residual-distribution methods also offer higher accuracy than finite-volume methods on similar meshes, few studies have directly compared the performance of the two approaches in a systematic and quantitative manner. In this study, comparisons between residual distribution and finite volume are made for steady-state smooth and discontinuous flows of gas dynamics, governed by hyperbolic conservation laws, to illustrate the strengths and deficiencies of the residual-distribution method. Deficiencies which reduce the accuracy are analyzed and a new nonlinear scheme is proposed that closely reproduces or surpasses the accuracy of the best linear residual-distribution scheme. The accuracy is further improved by extending the scheme to fourth order using established finite-element techniques. Finally, the compact stencil, arithmetic workload, and data parallelism of the fourth-order residual-distribution scheme are exploited to accelerate parallel computations on an architecture consisting of both CPU cores and a graphics processing unit. Numerical experiments are used to assess the gains to efficiency and possible monetary savings that may be provided by accelerated architectures.
|
2 |
Accurate Residual-distribution Schemes for Accelerated Parallel ArchitecturesGuzik, Stephen Michael Jan 12 August 2010 (has links)
Residual-distribution methods offer several potential benefits over classical methods, such as a means of applying upwinding in a multi-dimensional manner and a multi-dimensional positivity property. While it is apparent that residual-distribution methods also offer higher accuracy than finite-volume methods on similar meshes, few studies have directly compared the performance of the two approaches in a systematic and quantitative manner. In this study, comparisons between residual distribution and finite volume are made for steady-state smooth and discontinuous flows of gas dynamics, governed by hyperbolic conservation laws, to illustrate the strengths and deficiencies of the residual-distribution method. Deficiencies which reduce the accuracy are analyzed and a new nonlinear scheme is proposed that closely reproduces or surpasses the accuracy of the best linear residual-distribution scheme. The accuracy is further improved by extending the scheme to fourth order using established finite-element techniques. Finally, the compact stencil, arithmetic workload, and data parallelism of the fourth-order residual-distribution scheme are exploited to accelerate parallel computations on an architecture consisting of both CPU cores and a graphics processing unit. Numerical experiments are used to assess the gains to efficiency and possible monetary savings that may be provided by accelerated architectures.
|
3 |
A High-Resolution Procedure For Euler And Navier-Stokes Computations On Unstructured GridsJawahar, P 09 1900 (has links)
A finite-volume procedure, comprising a gradient-reconstruction technique and a multidimensional limiter, has been proposed for upwind algorithms on unstructured grids. The high-resolution strategy, with its inherent dependence on a wide computational stencil, does not suffer from a catastrophic loss of accuracy on a grid with poor connectivity as reported recently is the case with many unstructured-grid limiting procedures. The continuously-differentiable limiter is shown to be effective for strong discontinuities, even on a grid which is composed of highly-distorted triangles, without adversely affecting convergence to steady state. Numerical experiments involving transient computations of two-dimensional scalar convection to steady-state solutions of Euler and Navier-Stokes equations demonstrate the capabilities of the new procedure.
|
Page generated in 0.107 seconds