• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 42
  • 37
  • 13
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 342
  • 342
  • 342
  • 71
  • 66
  • 48
  • 47
  • 46
  • 46
  • 42
  • 38
  • 38
  • 34
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimal Design of District Energy Systems: a Multi-Objective Approach

Wang, Cong January 2016 (has links)
The aim of this thesis is to develop a holistic approach to the optimal design of energy systems for building clusters or districts. The emerging Albano university campus, which is planned to be a vivid example of sustainable urban development, is used as a case study through collaboration with the property owners, Akademiska Hus and Svenska Bostäder. The design addresses aspects of energy performance, environmental performance, economic performance, and exergy performance of the energy system. A multi-objective optimization approach is applied to minimize objectives such as non-renewable primary energy consumptions, the greenhouse gas emissions, the life cycle cost, and the net exergy deficit. These objectives reflect both practical requirements and research interest. The optimization results are presented in the form of Pareto fronts, through which decision-makers can understand the options and limitations more clearly and ultimately make better and more informed decisions. Sensitivity analyses show that solutions could be sensitive to certain system parameters. To overcome this, a robust design optimization method is also developed and employed to find robust optimal solutions, which are less sensitive to the variation of system parameters. The influence of different preferences for objectives on the selection of optimal solutions is examined. Energy components of the selected solutions under different preference scenarios are analyzed, which illustrates the advantages and disadvantages of certain energy conversion technologies in the pursuit of various objectives. As optimal solutions depend on the system parameters, a parametric analysis is also conducted to investigate how the composition of optimal solutions varies to the changes of certain parameters. In virtue of the Rational Exergy Management Model (REMM), the planned buildings on the Albano campus are further compared to the existing buildings on KTH campus, based on energy and exergy analysis. Four proposed alternative energy supply scenarios as well as the present case are analyzed. REMM shows that the proposed scenarios have better levels of match between supply and demand of exergy and result in lower avoidable CO2 emissions, which promise cleaner energy structures. / <p>QC 20160923</p>
12

New Multi-Objective Optimization Techniques and Their Application to Complex Chemical Engineering Problems

Vandervoort, Allan 18 February 2011 (has links)
In this study, two new Multi-Objective Optimization (MOO) techniques are developed. The two new techniques, the Objective-Based Gradient Algorithm (OBGA) and the Principal Component Grid Algorithm (PCGA), were developed with the goals of improving the accuracy and efficiency of the Pareto domain approximation relative to current MOO techniques. Both methods were compared to current MOO techniques using several test problems. It was found that both the OBGA and PCGA systematically produced a more accurate Pareto domain than current MOO techniques used for comparison, for all problems studied. The OBGA requires less computation time than the current MOO methods for relatively simple problems whereas for more complex objective functions, the computation time was larger. On the other hand, the efficiency of the PCGA was higher than the current MOO techniques for all problems tested. The new techniques were also applied to complex chemical engineering problems. The OBGA was applied to an industrial reactor producing ethylene oxide from ethylene. The optimization varied four of the reactor input parameters, and the selectivity, productivity and a safety factor related to the presence of oxygen in the reactor were maximized. From the optimization results, recommendations were made based on the ideal reactor operating conditions, and the control of key reactor parameters. The PCGA was applied to a PI controller model to develop new tuning methods based on the Pareto domain. The developed controller tuning methods were compared to several previously developed controller correlations. It was found that all previously developed controller correlations showed equal or worse performance than that based on the Pareto domain. The tuning methods were applied to a fourth order process and a process with a disturbance, and demonstrated excellent performance.
13

New Multi-Objective Optimization Techniques and Their Application to Complex Chemical Engineering Problems

Vandervoort, Allan 18 February 2011 (has links)
In this study, two new Multi-Objective Optimization (MOO) techniques are developed. The two new techniques, the Objective-Based Gradient Algorithm (OBGA) and the Principal Component Grid Algorithm (PCGA), were developed with the goals of improving the accuracy and efficiency of the Pareto domain approximation relative to current MOO techniques. Both methods were compared to current MOO techniques using several test problems. It was found that both the OBGA and PCGA systematically produced a more accurate Pareto domain than current MOO techniques used for comparison, for all problems studied. The OBGA requires less computation time than the current MOO methods for relatively simple problems whereas for more complex objective functions, the computation time was larger. On the other hand, the efficiency of the PCGA was higher than the current MOO techniques for all problems tested. The new techniques were also applied to complex chemical engineering problems. The OBGA was applied to an industrial reactor producing ethylene oxide from ethylene. The optimization varied four of the reactor input parameters, and the selectivity, productivity and a safety factor related to the presence of oxygen in the reactor were maximized. From the optimization results, recommendations were made based on the ideal reactor operating conditions, and the control of key reactor parameters. The PCGA was applied to a PI controller model to develop new tuning methods based on the Pareto domain. The developed controller tuning methods were compared to several previously developed controller correlations. It was found that all previously developed controller correlations showed equal or worse performance than that based on the Pareto domain. The tuning methods were applied to a fourth order process and a process with a disturbance, and demonstrated excellent performance.
14

Probe Design Using Multi-objective Genetic Algorithm

Lin, Fang-lien 22 August 2005 (has links)
DNA microarrays are widely used techniques in molecular biology and DNA computing area. Before performing the microarray experiment, a set of subsequences of DNA called probes which are complementary to the target genes of interest must be found. And its reliability seriously depends on the quality of the probe sequences. Therefore, one must carefully choose the probe set in target sequences. A new method for probe design strategy using multi-objective genetic algorithm is proposed. The proposed algorithm is able to find a set of suitable probes more efficient and uses a model based on suffix tree to speed up the specificity constraint checking. The dry dock experimental results show that the proposed algorithm finds several probes for DNA microarray that not only obey the design properties, but also have specificity.
15

New Multi-Objective Optimization Techniques and Their Application to Complex Chemical Engineering Problems

Vandervoort, Allan 18 February 2011 (has links)
In this study, two new Multi-Objective Optimization (MOO) techniques are developed. The two new techniques, the Objective-Based Gradient Algorithm (OBGA) and the Principal Component Grid Algorithm (PCGA), were developed with the goals of improving the accuracy and efficiency of the Pareto domain approximation relative to current MOO techniques. Both methods were compared to current MOO techniques using several test problems. It was found that both the OBGA and PCGA systematically produced a more accurate Pareto domain than current MOO techniques used for comparison, for all problems studied. The OBGA requires less computation time than the current MOO methods for relatively simple problems whereas for more complex objective functions, the computation time was larger. On the other hand, the efficiency of the PCGA was higher than the current MOO techniques for all problems tested. The new techniques were also applied to complex chemical engineering problems. The OBGA was applied to an industrial reactor producing ethylene oxide from ethylene. The optimization varied four of the reactor input parameters, and the selectivity, productivity and a safety factor related to the presence of oxygen in the reactor were maximized. From the optimization results, recommendations were made based on the ideal reactor operating conditions, and the control of key reactor parameters. The PCGA was applied to a PI controller model to develop new tuning methods based on the Pareto domain. The developed controller tuning methods were compared to several previously developed controller correlations. It was found that all previously developed controller correlations showed equal or worse performance than that based on the Pareto domain. The tuning methods were applied to a fourth order process and a process with a disturbance, and demonstrated excellent performance.
16

Automotive Engine Calibration with Experiment-Based Evolutionary Multi-objective Optimization / 実験ベース進化的多目的最適化による自動車用エンジンの適合 / ジッケン ベース シンカテキ タモクテキ サイテキカ ニ ヨル ジドウシャヨウ エンジン ノ テキゴウ

Kaji, Hirotaka 24 September 2008 (has links)
The aim of this thesis is establishment of an overall framework of a novel control parameter optimization of automotive engine. Today, control parameters of an automotive engine have to be adjusted adequately and simultaneously to achieve plural criteria such as environmental emissions, fuel-consumption and engine torque. This process is called 'engine calibration'. Because many electronic control devices have been adopted for engine to satisfy these objectives, the complexity of engine calibration is increasing year to year. Recent progress in automatic control and instrumentation provides a smart environment called Hardware In the Loop Simulation (HILS) for engine calibration. In addition, Response Surface Methodology (RSM) based on statistical model is currently employed as the optimization method. Nevertheless, this approach is complicated by adequate model selection, precise model construction, and close model validation to confirm the precision of the model output. To cope with these problems, we noticed experiment-based optimization via HILS environment based on Multi-objective Evolutionary Algorithms (MOEAs), that is expected to be a powerful optimization framework for real world problems such as engineering design, as another automatic calibration approach. In experiment-based optimization, the parameters of a real system are optimized directly by optimization techniques in real time through experimentation. In this thesis, this approach is called Experiment-Based Evolutionary Multi-objective Optimization (EBEMO) and it is proposed as a novel automatic engine calibration technique. This approach can release us from burdens of model selection, construction, and validation. When using this technique, calibration can be done immediately after specifications have been changed after optimization. Hence, EBEMO promises to be an effective approach to automatic engine calibration. However, since conventional MOEAs face several difficulties, it is not easy to apply it to real engines. On the one hand, deterioration factors of the search performance of MOEAs in real environments have to be considered. For example, the observation noise of sensors included in output interferes with convergence of MOEAs. In addition, transient response by parameter switching also has similar harmful effects. Moreover, the periodicity of control inputs increase the complexity of the problems. On the other hand, the search time of MOEAs in real environments has to reduce because MOEAs require a tremendous number of evaluations. While we can obtain many measurements with HILS, severe limitations in the number of fitness evaluations still exist because the real experiments need real-time evaluations. Therefore, it is difficult to obtain a set of Pareto optimal solutions in practical time with conventional MOEAs. Additionally, plural MOPs defined by plural operating conditions of map-based controllers has to be optimized. In this thesis, to overcome the difficulties and to make EBEMO using the HILS environment feasible, five techniques are proposed. Each technique is developed through problem formulation, and their effectiveness are confirmed via numerical and real engine experiments. First, observation noise handling technique for MOEAs is considered. Because observation noise deteriorates the search ability of MOEAs, a memorybased fitness estimation method to exclude observation noise is introduced. Then, a crossover operator for periodic functions is proposed. Periodicity exists in engineering problems and leads to harmful effects on the performance of evolutionary algorithms. Moreover, the influence of transient response caused by parameter switching for dynamical systems is considered. In order to solve this problem, a solver of traveling salesman problems is used to determine the evaluation order of individuals. In addition, Pre-selection as acceleration method of MOEAs is proposed. In this technique, the generated offspring are pre-evaluated in the approximation model made by the search history, and then the promising offspring are evaluated in a real environment. Finally, parameterization of multi-objective optimization problems is considered. In engine calibration for maps, optimal control parameters have to be obtained at each operating condition such as engine speed and torque. This problem can be formulated in a form that needs to solve all of the plural multi-objective optimization problems defined by plural conditional variables. To solve this problem effectively, an interpolative initialization method is proposed. Through the real engine experiments, it was confirmed that EBEMO can achieve a practical search accuracy and time by using proposed techniques. In conclusion, the contribution of EBEMO for engine calibration is discussed. Additionally, the directions for future work are outlined. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(情報学) / 甲第14187号 / 情博第320号 / 新制||情||61(附属図書館) / 26493 / UT51-2008-N504 / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 喜多 一, 教授 酒井 徹朗, 教授 片井 修 / 学位規則第4条第1項該当
17

Reliable Robot-Assisted Sensor Relocation via Multi-Objective Optimization

Desjardins, Benjamin January 2016 (has links)
Wireless sensor networks (WSNs) are an emerging area of technology that have applications across many domains. By adding a mobile platform to the WSN we can increase its capabilities. One such scenario involves a mobile platform relocating sensors to fill sensing holes that are the result of sensor failure. We examine this problem, known as robot-assisted sensor relocation (RASR), and propose our own, multi-objective version, that we call reliable robot-assisted sensor relocation. We solve this problem using a set of state-of-the-art evolutionary multi-objective optimization algorithms. Additionally, we examine the multi-robot model, which we christen reliable multiple robot-assisted sensor relocation (RMRASR). The works collected within define these problems as well as provide empirical insight into the performance of well-known algorithms using these problems as a test-bed.
18

Multiple objective optimization of an airfoil shape

Dymond, Antoine Smith Dryden 02 March 2011 (has links)
An airfoil shape optimization problem with conflicting objectives is handled using two different multi-objective approaches. These are an a priori scalarization approach where the conflicting objectives are assigned weights and summed together to form a single objective, and the Pareto-optimal multi-objective approach. The optimization formulations for both approaches contain challenging numerical characteristics which include noise, multi-modality and undefined regions. Gradient-, surrogate- and population-based single objective optimization methods are applied to the `a priori' formulations. The gradient methods are modified to improve their performance on noisy problems as well as to handle undefined regions in the design space. The modifications are successful but the modified methods are outperformed by the surrogate methods and population based methods. Population-based techniques are used for the Pareto-optimal multi-objective approach. Two established optimization algorithms and two custom algorithms are implemented. The custom algorithms use fitted unrotated hyper ellipses and linear aggregating functions to search the design space for non-dominated designs. Various multi-objective formulations are posed to investigate different aspects of the airfoil design problem. The non-dominated designs found by the Pareto-optimal multi-objective optimization algorithms are then presented. / Dissertation (MEng)--University of Pretoria, 2011. / Mechanical and Aeronautical Engineering / unrestricted
19

Relevance of Multi-Objective Optimization in the Chemical Engineering Field

Cáceres Sepúlveda, Geraldine 28 October 2019 (has links)
The first objective of this research project is to carry out multi-objective optimization (MOO) for four simple chemical engineering processes to clearly demonstrate the wealth of information on a given process that can be obtained from the MOO instead of a single aggregate objective function. The four optimization case studies are the design of a PI controller, an SO2 to SO3 reactor, a distillation column and an acrolein reactor. Results that were obtained from these optimization case studies show the benefit of generating and using the Pareto domain to gain a deeper understanding of the underlying relationships between the various process variables and the different performance objectives. In addition, an acrylic acid production plant model is developed in order to propose a methodology to solve multi-objective optimization for the two-reactor system model using artificial neural networks (ANNs) as metamodels, in an effort to reduce the computational time requirement that is usually very high when first-principles models are employed to approximate the Pareto domain. Once the metamodel was trained, the Pareto domain was circumscribed using a genetic algorithm and ranked with the Net Flow method (NFM). After the MOO was carry out with the ANN surrogate model, the optimization time was reduced by a factor of 15.5.
20

New Multi-Objective Optimization Techniques and Their Application to Complex Chemical Engineering Problems

Vandervoort, Allan January 2011 (has links)
In this study, two new Multi-Objective Optimization (MOO) techniques are developed. The two new techniques, the Objective-Based Gradient Algorithm (OBGA) and the Principal Component Grid Algorithm (PCGA), were developed with the goals of improving the accuracy and efficiency of the Pareto domain approximation relative to current MOO techniques. Both methods were compared to current MOO techniques using several test problems. It was found that both the OBGA and PCGA systematically produced a more accurate Pareto domain than current MOO techniques used for comparison, for all problems studied. The OBGA requires less computation time than the current MOO methods for relatively simple problems whereas for more complex objective functions, the computation time was larger. On the other hand, the efficiency of the PCGA was higher than the current MOO techniques for all problems tested. The new techniques were also applied to complex chemical engineering problems. The OBGA was applied to an industrial reactor producing ethylene oxide from ethylene. The optimization varied four of the reactor input parameters, and the selectivity, productivity and a safety factor related to the presence of oxygen in the reactor were maximized. From the optimization results, recommendations were made based on the ideal reactor operating conditions, and the control of key reactor parameters. The PCGA was applied to a PI controller model to develop new tuning methods based on the Pareto domain. The developed controller tuning methods were compared to several previously developed controller correlations. It was found that all previously developed controller correlations showed equal or worse performance than that based on the Pareto domain. The tuning methods were applied to a fourth order process and a process with a disturbance, and demonstrated excellent performance.

Page generated in 0.1481 seconds