Spelling suggestions: "subject:"multiscale properties"" "subject:"multifocale properties""
1 |
Plasma And Cold Sprayed Aluminum Carbon Nanotube Composites: Quantification Of Nanotube Distribution And Multi-Scale Mechanical PropertiesBakshi, Srinivasa R 29 May 2009 (has links)
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
|
2 |
Étude du vieillissement de composites renforcés par des fibres naturelles : application bâtiment / Study of natural fibres reinforced composites ageing : building ApplicationRabii, Hajer 25 March 2016 (has links)
L'utilisation des composites biosourcés dans des applications extérieures pour le génie civil pose le problème de leur durabilité dans les conditions d'utilisation, en raison de la forte hydrophilie des fibres naturelles. En effet, le comportement de ces composites en présence d’eau et d’humidité ou face aux contraintes thermiques et agressions biologiques est mal connu. L’objectif de cette thèse est d’étudier, par des analyses multi-échelles, la réversibilité des évolutions des propriétés de composites à matrice polyéthylène renforcée par des fibres courtes de lin. Pour ce faire, des cycles humidification/séchage ont été réalisés lors de vieillissement hydro et hygrothermiques, à 30 et 80°C. L’influence du taux de fibres et de la qualité de l'interface sur l’évolution de ces propriétés a été évaluée. De même, une étude de l’impact du développement microbien sur les composites a été réalisée pendant 6 mois. Après une caractérisation initiale des matériaux, les évolutions des caractéristiques cinétiques de coefficients de diffusion et de prise de masse au cours des vieillissements ont été évaluées. Ainsi, deux phénomènes antagonistes semblent gouverner l'évolution du coefficient de diffusion des composites. Dans un second temps, la caractérisation mécanique de ces composites au cours du vieillissement a permis d'identifier les phénomènes mis en jeu. Les évolutions du module mécanique à 30°C sont réversibles après séchage et sont attribuées à une plastification des microfibrilles de cellulose. Ces chutes s'accentuent et deviennent irréversibles à 80°C, mettant en évidence des dégradations plus importantes des matériaux. Dans un troisième temps, le phénomène de dégradation biologique de ces matériaux a été étudié. Il a été vérifié que les microorganismes sont responsables de consommation sélective de composants de fibres de lin et que leur croissance est favorisée par le taux de fibres dans le composite / The use of bio-based composites in outdoor applications for civil engineering raises the issue of their sustainability in service. This is mainly due to the highly hydrophilic character of natural fibers. Indeed, the behavior of these composites in a wet environment or under thermal and biological constraints is not well known. The main objective of this study is to get a better understanding of the reversibility of bio-based composites properties. Therefore, wetting/ drying cycles were performed on polyethylene/short flax fibre composites under hydro and hygrothermal ageing at 30 and 80°C. The influence of the fiber content and the interface quality on the mechanical properties was monitored. Moreover, a 6 months study of a microbial growth impact on these composites was carried out. A characterization of the non-aged materials was conducted first. Then, the kinetic parameters such as the water diffusion coefficient and the weight changes due to ageing were determined. Two competing mechanisms seem to affect the diffusion coefficient. The mechanical characterization of these composites during aging has enabled the identification of the aging mechanisms. Changes in the mechanical modulus at 30°C were mostly reversible after a drying cycle and were associated with a plasticizing effect of the water molecules on the cellulose microfibrils. The property losses increase and become irreversible at 80°C, which indicates a higher degradation of the composites. Finally, the biological degradation of these materials has been studied. It was verified that selective consumption of flax fiber components by microorganisms occurs, and that their growth is favored by the fiber content in the composite
|
3 |
Structure et Mécanique du pli vocal humain : caractérisation et modélisation multi-échelles / Human vocal fold structure and mechanics : multi-scale characterisation and modellingCochereau, Thibaud 18 March 2019 (has links)
Le pli vocal humain possède des propriétés vibratoires exceptionnelles. Il est capable de supporter de grandes déformations, pour différent type de chargement, de manière répétée et réversible. Ces propriétés vibro-mécaniques particulières sont étroitement liées à sa microstructure: une structure multi-couches complexe fortement hétérogène composées de réseaux de fibres protéique. Cependant, il est encore aujourd'hui difficile de décrire précisément l'implication des spécificités microstructurales du pli dans son comportement biomécanique.Afin de préciser ce lien et d'aller vers une meilleure compréhension du comportement du tissu vocal, cette étude se propose d'aborder la problématique sous trois approches complémentaires, mélant caractérisation microstructurale, caractérisation mécanique et modélisation numérique. Dans un premier temps, la microstructure du pli a été étudiée emph{ex vivo} à l'aide d'une technique originale basée sur la tomographie à rayon X. L'usage de tomographie synchrotron par contraste de phase a permis de révéler la structure du tissu à différentes échelles. En particulier, des clichés 3D à forte résolution de la structure fibreuse des couches supérieures et musculaires du tissu ont pu être acquis. Ces clichés ont donné lieu à une analyse 3D quantitative de l'arrangement fibreux, permettant la détermination de descripteur d'orientation et de géométrie 3D des fibres.Dans un second temps, le comportement mécanique du tissu sous différentes conditions de chargement a été étudié. Un protocole a été proposé, afin de caractériser un même échantillon en traction, en compression et en cisaillement. Ces essais ont permis de compléter les connaissances existantes sur la biomécanique de pli, et constitue des données de références importantes pour la construction et la validation de modèle numérique.A partir des données acquises expérimentalement, un modèle micro mécanique a été développé. Ce modèle a la spécificité de prendre en compte l'arrangement 3D du tissu à travers une représentation idéalisée mais pertinente de sa microstructure fibreuse. Les réponses macroscopiques prédites pour différents chargements ont pu être comparées à l'expérience pour validation. A l'échelle microscopique, la cinématique des fibres au cours du chargement a pu être simulée. Les micromécanismes ayant lieu au cours de la déformation du réseau fibreux ont ainsi pu être identifiés, ouvrant de nouvelles perspectives dans la compréhension des propriétés multi-échelles du tissu. / The human vocal fold owns exceptional vibratory properties. It is capable of withstanding large deformations, for different types of loading, in a repeated and reversible manner. These particular vibro-mechanical properties are closely linked to its microstructure: a multi-layer complex structure composed of highly heterogeneous protein fibre networks. However, it is still difficult today to describe precisely the implication of the microstructural specificities of the fold in its biomechanical behaviour.In order to clarify this link and to move towards a better understanding of the behaviour of the vocal tissue, this study proposes to approach the problem under three complementary approaches, combining microstructural characterization, mechanical characterization and numerical modelling. First, the microstructure of the fold was studied emph{ex vivo} using an original technique based on X-ray tomography. The use of synchrotron tomography in phase retrieval mode has revealed the structure of the tissue at different scales. In particular, high-resolution 3D images of the fibrous structure of the upper and muscular layers of the tissue were acquired. These images gave rise to a quantitative 3D analysis of the fibrous arrangement, allowing the determination of descriptors of orientation and 3D geometry of the fibers.In a second step, the mechanical behaviour of the fabric under different loading conditions was studied. A protocol has been proposed to characterize the same sample in tension, compression and shear. These tests have complemented existing knowledge on fold biomechanics, and constitute important reference data for the construction and validation of digital models.Finally, based on the data acquired experimentally, a micro-mechanical model was developed. This model has the specificity to take into account the 3D arrangement of the tissue through an idealized but relevant representation of its fibrous microstructure. The macroscopic responses predicted for different loading conditionds could be compared to the experiment for validation. At the microscopic scale, the kinematics of the fibres during the loading could be simulated. The micromechanisms that occur during the deformation of the fibrous network could thus be identified, opening new perspectives in the understanding of the multi-scale properties of the tissue.
|
Page generated in 0.0569 seconds