Spelling suggestions: "subject:"multiagent robotics"" "subject:"multitangent robotics""
1 |
Active recruitment in dynamic teams of heterogeneous robotsNagy, Geoff 01 November 2016 (has links)
Using teams of autonomous, heterogeneous robots to operate in dangerous environments has a number of advantages. Among these are cost-effectiveness and the ability to spread out skills among team members. The nature of operating in dangerous domains means that the risk of loss is higher---teams will often lose members and must acquire new ones. In this work, I explore various recruitment strategies for the purpose of improving an existing framework for team management. My additions allow robots to more actively acquire new teams members and assign tasks among other robots on a team without the intervention of a team leader. I evaluate this framework in simulated post-disaster environments where the risk of robot loss is high and communications are often unreliable. My results show that in many scenarios, active recruitment strategies provide significant performance benefits. / February 2017
|
2 |
Graphs, Simplicial Complexes and Beyond: Topological Tools for Multi-agent CoordinationMuhammad, Abubakr 16 December 2005 (has links)
In this work, connectivity graphs have been studied as models of local interactions in multi-agent robotic systems. A systematic study of the space of connectivity graphs has been done from a geometric and topological point of view. Some results on the realization of connectivity graphs in their respective configuration spaces have been given. A complexity analysis of networks, from the point of view of intrinsic structural complexity, has been given. Various topological spaces in networks, as induced from their connectivity graphs, have been recognized and put into applications, such as those concerning coverage problems in sensor networks. A framework for studying dynamic connectivity graphs has been proposed. This framework has been used for several applications that include the generation of low-complexity formations as well as collaborative beamforming in sensor networks. The theory has been verified by generating extensive simulations, with the help of software tools of computational homology and semi-definite programming. Finally, several open problems and areas of further research have been identified.
|
Page generated in 0.082 seconds