• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

State of the Art Roller Rig for Precise Evaluation of Wheel-Rail Contact Mechanics and Dynamics

Meymand, Sajjad Zeinoddini 25 January 2016 (has links)
The focus of this study is on the development of a state-of-the-art single-wheel roller rig for studying contact mechanics and dynamics in railroad applications. The use of indoor-based simulation tools has become a mainstay in vehicle testing for the automotive and railroad industries. In contrast to field-testing, roller rigs offer a controlled laboratory environment that can provide a successful path for obtaining data on the mechanics and dynamics of railway systems for a variety of operating conditions. The idea to develop a laboratory test rig started from the observation that there is a need for better-developed testing fixtures capable of accurately explaining the complex physics of wheel-rail contact toward designing faster, safer, and more efficient railway systems. A review of current roller rigs indicated that many desired functional requirements for studying contact mechanics currently are not available. Thus, the Virginia Tech Railway Technologies Laboratory (RTL) has embarked on a mission to develop a state-of-the-art testing facility that will allow experimental testing of contact mechanics in a dynamic, controlled, and consistent manner. VT roller rig will allow for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: cant angle, angle of attack, and lateral displacement. Two sophisticated independent drivelines are configured to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. A novel force measurement system, suitable for steel on steel contact, is configured to precisely measure the contact forces and moments at the contact patch. The control architecture is developed based on the SynqNet data acquisition system offered by Kollmorgen, the motors supplier. SynqNet provides a unified communication protocol between actuators, drives, and data acquisition system, hence eliminating data conversion among them. Various design analysis indicates that the rig successfully meets the set requirements: additional accuracy in measurements, and better control on the design of experiments. The test results show that the rig is capable of conducting various contact mechanics studies aimed for advancing the existing art. Beyond developing the experimental testing fixture for studying contact mechanics, this study provides a comprehensive review of the contact models. It discusses the simplifying assumptions for developing the models, compares the models functionality, and highlights the open areas that require further experimental and theoretical research. In addition, a multi-body dynamic model of the entire rig, using software package SIMPACK, is developed for conducting modal analysis of the rig and evaluating the performance of the rig's components. A MATLAB routine is also developed that provides a benchmark for developing creep curves from measurements of the rig and comparing them with existing creep curves. / Ph. D.
2

Studies In The Dynamics Of Two And Three Wheeled Vehicles

Karanam, Venkata Mangaraju 12 1900 (has links) (PDF)
Two and three-wheeled vehicles are being used in increasing numbers in many emerging countries. The dynamics of such vehicles are very different from those of cars and other means of transportation. This thesis deals with a study of the dynamics of a motorcycle and an extensively used three-wheeled vehicle, called an “auto-rickshaw” in India. The commercially available multi-body dynamics (MBD) software, ADAMS, is used to model both the vehicles and simulations are performed to obtain insight into their dynamics. In the first part of the thesis, a study of the two wheeler dynamics is presented. A fairly detailed model of a light motorcycle with all the main sub-systems, such as the frame, front fork, shock absorbers , power train, brakes, front and rear wheel including tire slips and the rider is created in ADAMS-Motorcycle. The simulation results dealing with steering torques and angles for steady turns on a circular path are presented. From the simulation results and analytical models, it is shown that for path radius much greater than motorcycle wheel base, the steering torque and angle can be described by only two functions for each of the two variables. The first function is related to the lateral acceleration and can be determined numerically and the second function, in terms of the inverse of the path radius, is derived as an analytical approximation. Various tire and geometric parameters are varied in the ADAMS simulations and it is clearly shown that steady circular motion of a motorcycle can be reasonably approximated by only two curves–one for steering torque and one for steering angle. In the second part of the thesis, a stability analysis of the three-wheeled “autorickshaw” is presented. The steering instability is one of the major problems of the “auto-rickshaw” and this is studied using a MBD model created in ADAMS-CAR .In an Initial model the frame ,steering column and rear-forks (trailing arms) are assumed to be rigid. A linear eigenvalue analysis, at different speeds, reveals a predominantly steering oscillation, called a “wobble” mode, with a frequency in the range of 5 to 6Hz. The analysis results show that the damping of this mode is small but positive up to the maximum speed(14m/s) of the three-wheeled vehicle. Experiments performed on the three-wheeled vehicle show that the mode is unstable at speeds below 8.33m/s and thus the experimental results do not agree with the model. Next, this wobble instability is studied with an analytical model, similar to the model proposed for wheel shimmy problem in aircrafts. The results of this model show that the wobble is stable at low speeds regardless of the magnitude of torsional stiffness of steering column. This is also not matching with the experimental result. A more refined MBD model with flexibility incorporated in the frame, steering column and the trailing arm is constructed. Simulation results with the refined model show three modes of steering oscillations. Two of these are found to be well damped and the third is found to be lightly damped with negative damping at low speeds, and the results of the model with the flexibility is shown to be matching reasonably well with the experimental results. Detailed simulations with flexibility of each body incorporated, one at a time, show that the flexibility in the steering column is the main contributor of the steering instability and the instability is similar to the wheel shimmy problem in aircrafts. Finally, studies of modal interaction on steering instabilities and parametric studies with payload and trail are presented.

Page generated in 0.0698 seconds