• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibrating Video Capture Systems To Aid Automated Analysis And Expert Rating Of Human Movement Performance

Yeshala, Sai krishna 27 June 2022 (has links)
We propose a methodology for calibrating the activity space and the cameras involved in video capture systems for upper extremity stroke rehabilitation. We discuss an in-home stroke rehabilitation system called Semi-Automated Rehabilitation At Home System (SARAH) and a clinic-based system called Action Research Arm Test (ARAT) developed by the Interactive Neuro-Rehabilitation Lab (INR) at Virginia Tech. We propose a calibration workflow for achieving invariant video capture across multiple therapy sessions. This ensures that the captured data is less noisy. In addition, there is prior knowledge of the captured activity space and patient location in the video frames provided to the Computer Vision algorithms analyzing the captured data. Such a standardized calibration approach improved machine learning analysis of patient movements and a higher rate of agreement across multiple therapists regarding the captured patient performance. We further propose a Multi-Camera Calibration approach to perform stereo camera calibration in SARAH and ARAT capture systems to help perform a 3D reconstruction of the activity space from 2D videos. The importance of the proposed activity space and camera calibration workflows, including new research paths opened as a result of our approach, are discussed in this thesis. / Master of Science / In this thesis, I describe the workflows I developed to perform calibration of stroke rehabilitation activity spaces, including the calibration of cameras involved in video capture systems for analyzing patient movements in stroke rehabilitation practices. The proposed workflows are designed to facilitate convenient user involvement in calibrating the video capture systems to provide invariant and consistent video captures, including the extraction of fine-grain information utilizing camera calibration results, to the therapists and computer vision-based automated systems for improved analysis of patient performance in stroke rehabilitation practices. The importance of human-in-the-loop systems, including future research paths to strengthen the symbiotic relationship between humans and Artificial Intelligence systems in stroke rehabilitation practices, is discussed. The quantitative and qualitative results generated from the workshops conducted to test and evaluate the calibration workflows align with the stakeholder's needs in stroke rehabilitation systems.
2

Lokalizace objektů v prostoru / Object Localisation in 3D Space

Šolony, Marek Unknown Date (has links)
Virtual reality systems are nowadays common part of many research institutes due to its low cost and effective visualization of data. They mostly allow visualization and exploration of virtual worlds, but many lack user interaction. In this paper we suggest multi-camera optical system, which allows effective user interaction, thereby increasing immersion of virtual system. This paper describes the calibration process of multiple cameras using point correspondences.
3

Geometric model of a dual-fisheye system composed of hyper-hemispherical lenses /

Castanheiro, Letícia Ferrari January 2020 (has links)
Orientador: Antonio Maria Garcia Tommaselli / Resumo: A combinação de duas lentes com FOV hiper-hemisférico em posição opostas pode gerar um sistema omnidirecional (FOV 360°) leve, compacto e de baixo custo, como Ricoh Theta S e GoPro Fusion. Entretanto, apenas algumas técnicas e modelos matemáticos para a calibração um sistema com duas lentes hiper-hemisféricas são apresentadas na literatura. Nesta pesquisa, é avaliado e definido um modelo geométrico para calibração de sistemas omnidirecionais compostos por duas lentes hiper-hemisféricas e apresenta-se algumas aplicações com esse tipo de sistema. A calibração das câmaras foi realizada no programa CMC (calibração de múltiplas câmeras) utilizando imagens obtidas a partir de vídeos feitos com a câmara Ricoh Theta S no campo de calibração 360°. A câmara Ricoh Theta S é composto por duas lentes hiper-hemisféricas fisheye que cobrem 190° cada uma. Com o objetivo de avaliar as melhorias na utilização de pontos em comum entre as imagens, dois conjuntos de dados de pontos foram considerados: (1) apenas pontos no campo hemisférico, e (2) pontos em todo o campo de imagem (isto é, adicionar pontos no campo de imagem hiper-hemisférica). Primeiramente, os modelos ângulo equisólido, equidistante, estereográfico e ortogonal combinados com o modelo de distorção Conrady-Brown foram testados para a calibração de um sensor da câmara Ricoh Theta S. Os modelos de ângulo-equisólido e estereográfico apresentaram resultados melhores do que os outros modelos. Portanto, esses dois modelos de projeção for... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The arrangement of two hyper-hemispherical fisheye lenses in opposite position can design a light weight, small and low-cost omnidirectional system (360° FOV), e.g. Ricoh Theta S and GoPro Fusion. However, only a few techniques are presented in the literature to calibrate a dual-fisheye system. In this research, a geometric model for dual-fisheye system calibration was evaluated, and some applications with this type of system are presented. The calibrating bundle adjustment was performed in CMC (calibration of multiple cameras) software by using the Ricoh Theta video frames of the 360° calibration field. The Ricoh Theta S system is composed of two hyper-hemispherical fisheye lenses with 190° FOV each one. In order to evaluate the improvement in applying points in the hyper-hemispherical image field, two data set of points were considered: (1) observations that are only in the hemispherical field, and (2) points in all image field, i.e. adding points in the hyper-hemispherical image field. First, one sensor of the Ricoh Theta S system was calibrated in a bundle adjustment based on the equidistant, equisolid-angle, stereographic and orthogonal models combined with Conrady-Brown distortion model. Results showed that the equisolid-angle and stereographic models can provide better solutions than those of the others projection models. Therefore, these two projection models were implemented in a simultaneous camera calibration, in which the both Ricoh Theta sensors were considered i... (Complete abstract click electronic access below) / Mestre

Page generated in 0.1117 seconds