• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 11
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 61
  • 60
  • 41
  • 37
  • 25
  • 25
  • 24
  • 22
  • 22
  • 22
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Implementation of a Manycast Protocol in a Partitionable Mobile Ad hoc Network

Nykvist, Gustav January 2009 (has links)
<p>Wireless communication has grown very popular, and communication is the key</p><p>to success in many situations. However, most of the common technologies today</p><p>rely on infrastructure and in disaster situations infrastructure might be lost or</p><p>get severely overloaded. This master thesis concerns intermittently connected</p><p>mobile ad hoc networks. A network in which the devices may move freely in any</p><p>direction and still be able to communicate. To be able to demonstrate a network</p><p>protocol called random-walk gossip-based manycast (RWG) my assignment has been</p><p>to implement this protocol using off-the-shelf hardware and software.</p><p>RWG is a multi-hop and partition-tolerant mobile ad hoc manycast network</p><p>protocol. Multi-hop refers to information being able to hop between more than</p><p>two nodes in a network and partition-tolerant means that the protocol works even</p><p>though a network is partitioned. Manycast means that the information should</p><p>be successfully delivered to K of all the potential nodes in the area. The RWG</p><p>protocol makes use of four different packet types, request to forward (REQF), ac-</p><p>knowledgement (ACK), ok to forward (OKTF) and be silent (BS). The actual data</p><p>being sent is carried by REQFs, and is referred to as messages. When a message</p><p>is sent it takes what could be described as a random walk among the nodes in the</p><p>network, hence the name.</p><p>The implementation of the RWG protocol resides in user-space and depends on</p><p>the IEEE 802.11b standard and the raw socket that is specified in the BSD socket</p><p>API. It is written in C and was developed on a machine running Ubuntu. It runs</p><p>on systems that use Linux 2.6 kernels and it supports cross-compiling for ARM</p><p>based devices such as the Nokia N810 internet tablet and the Android dev phone</p><p>1. To be able to demonstrate the protocol I developed my own client application.</p><p>Moreover, an already existing application for Android, Portable Open Search and</p><p>Identification Tool (POSIT), was successfully extended to run on top of the RWG</p><p>implementation. The extension was developed by people in the POSIT project</p><p>and tested in a physical experiment covering five devices.</p><p>The report covers the RWG protocol, the system choice, the implementation</p><p>and the testing of the implementation.</p>
32

Multi-Route Coding in Wireless Multi-Hop Networks

Okada, Hiraku, Nakagawa, Nobuyuki, Wada, Tadahiro, Yamazato, Takaya, Katayama, Masaaki 05 1900 (has links)
No description available.
33

On the Optimal Transmission Strategies for Sources without Channel State Information

Pourahmadi, Vahid January 2011 (has links)
With the growth of multimedia services, it is essential to find new transmission schemes to support higher data rates in wireless networks. In this thesis, we study networks in which the Channel State Information (CSI) is only available at the destination. We focus on the analysis of three different network setups. For each case, we propose a transmission scheme which maximizes the average performance of the network. The first scenario, which is studied in Chapter 2, is a multi-hop network in which the channel gain of each hop changes quasi-statically from one transmission block to the other. Our main motivation to study this network is the recent advances in deployment of relay nodes in wireless networks (e.g., LTE-A and IEEE 802.16j). In this setup, we assume that all nodes are equipped with a single antenna and the relay nodes are not capable of data buffering over multiple transmission blocks. The proposed transmission scheme is based on infinite-layer coding at all nodes (the source and all relays) in conjunction with the Decode-and-Forward DF relaying. The objective is to maximize the statistical average of the received rate per channel use at the destination. To find the optimal parameters of this code, we first formulate the problem for a two-hop scenario and describe the code design algorithm for this two-hop setting. The optimality of infinite-layer DF coding is also discussed for the case of two-hop networks. The result is then generalized to multi-hop scenarios. To show the superiority of the proposed scheme, we also evaluate the achievable average received rate of infinite-layer DF coding and compare it with the performance of previously known schemes. The second scenario, studied in Chapter 3, is a single-hop network in which both nodes are equipped with multiple antennas, while the channel gain changes quasi-statically and the CSI is not available at the source. The main reason for selecting this network setup is to study the transmission of video signals (compressed using a scalable video coding technique, e.g., SVC H.264/AVC) over a Multiple-Input Multiple-Output (MIMO) link. In this setup, although scalable video coding techniques compress the video signal into layers with different importance (for video reconstruction), the source cannot adapt the number of transmitted layers to the capacity of the channel (since it does not have the CSI in each time slot). An alternative approach is to always transmit all layers of the compressed video signal, but use unequal error protection for different layers. With this motivation, we focus on the design of multilayer codes for a MIMO link in which the destination is only able to perform successive decoding (not joint-decoding). In this chapter, we introduce a design rule for construction of multilayer codes for MIMO systems. We also propose a algorithm that uses this design rule to determine the parameters of the multilayer code. The performance analysis of the proposed scheme is also discussed in this chapter. In the two previous scenarios, the ambiguity of the source regarding the channel state comes from the fact that the channel gains randomly change in each transmission block and there is no feedback to notify the source about the current state of the channel. Apart from these, there are some scenarios in which the channel state is unknown at the source, even though the channel gain is fixed and the source knows its value. The third scenario of this thesis presents an example of such network setups. More precisely, in Chapter 4, we study a multiple access network with K users and one Access Point (AP), where all nodes are equipped with multiple antennas. To access the network, each user independently decides whether to transmit in a time slot or not (no coordination between users). Considering a two-user random access network, we first derive the optimal value of network average Degrees of Freedom (DoF) (introduced in Section 4.1). Generalizing the result to multiuser networks, we propose an upper-bound for the network average DoF of a K-user random access network. This upper-bound is then analyzed for different network configurations to identify the network classes in which the proposed upper-bound is tight. It is also shown that simple single-stream data transmission achieves the upper-bound in most network settings. However, for some network configurations, we need to apply multi-stream data transmission in conjunction with interference alignment to reach the upper-bound. Some illustrative examples are also presented in this chapter.
34

IP Mobility Support in Multi-hop Vehicular Communications Networks

Cespedes Umana, Sandra Lorena January 2012 (has links)
The combination of infrastructure-to-vehicle and vehicle-to-vehicle communications, namely the multi-hop Vehicular Communications Network (VCN) , appears as a promising solution for the ubiquitous access to IP services in vehicular environments. In this thesis, we address the challenges of multi-hop VCN, and investigate the seamless provision of IP services over such network. Three different schemes are proposed and analyzed. First, we study the limitations of current standards for the provision of IP services, such as 802.11p/WAVE, and propose a framework that enables multi-hop communications and a robust IP mobility mechanism over WAVE. An accurate analytical model is developed to evaluate the throughput performance, and to determine the feasibility of the deployment of IP-based services in 802.11p/WAVE networks. Next, the IP mobility support is extended to asymmetric multi-hop VCN. The proposed IP mobility and routing mechanisms react to the asymmetric links, and also employ geographic location and road traffic information to enable predictive handovers. Moreover, since multi-hop communications suffer from security threats, it ensures that all mobility signalling is authenticated among the participant vehicles. Last, we extend our study to a heterogeneous multi-hop VCN, and propose a hybrid scheme that allows for the on-going IP sessions to be transferred along the heterogeneous communications system. The proposed global IP mobility scheme focuses on urban vehicular scenarios, and enables seamless communications for in-vehicle networks, commuters, and pedestrians. The overall performance of IP applications over multi-hop VCN are improved substantially by the proposed schemes. This is demonstrated by means of analytical evaluations, as well as extensive simulations that are carried out in realistic highway and urban vehicular scenarios. More importantly, we believe that our dissertation provides useful analytical tools, for evaluating the throughput and delay performance of IP applications in multi-hop vehicular environments. In addition, we provide a set of practical and efficient solutions for the seamless support of IP tra c along the heterogeneous and multi-hop vehicular network, which will help on achieving ubiquitous drive-thru Internet, and infotainment traffic access in both urban and highway scenarios.
35

Time Slot allocation for Improving Energy-Efficiency in Multi-hop Layered WSN

Lu, Po-Hsueh 05 May 2011 (has links)
Advances in micro-sensor and wireless technology enable small but smart sensors to be developed for wide range environment-monitor applications. Since Sensor nodes only have limited power capacity and are difficult to recharge, how to prolong network lifetime is an important issue in wireless sensor networks design. Several topology control algorithms have been proposed to maintain the connectivity of wireless sensor network and reduce the energy consumption. Multi-hop Infrastructure Network Architecture (MINA) is a kind of Multi-layer Architecture for WSN topology, which utilizes hundred of sensors to transmit data to a sink. This architecture partitions sensor nodes into layers based on their distances (calculated by hop count) to BS. In this way, the node connected to more nodes will relay more data for other nodes. This make the node exhaust its battery power quickly and thus reduces the network lifetime. This study proposes an Efficient Energy Time-Slot Allocation (EETA) scheme which distributes time slots in accordance with the energy of neighbor nodes and the number of neighbor nodes. In addition, this work also devises an adaptive time slot size to reduce data packet drop in case when the node buffer is full. The simulation results show that the EETA performs better than the MINA in terms of network lifetime.
36

Investigation on Maximal Network Lifetime Using Optimal Power Allocation and Relay Selection Scheme in Multi-hop Wireless Networks

Liong, Jian-Wah 07 September 2011 (has links)
In the wireless sensor network environment (WSN), the system transmits signals often need to rely on the stability and reliability of the relay node of each path of cooperation with each other to achieve balance between leisure and stability. In general, relay adopted Amplify-and-Forward (AF) and Decode-and-Forward (DF) to relaying the signal to destination. Unfortunately, in reality, the relay node itself had a problem of limited energy supplies, would make the overall performance degrade before reaching the optimal performance. Therefore, we propose two novel relay selection schemes and through the multi-hop transmission with cooperation. We also derived the optimal power allocation algorithms for all relay nodes. Finally, simulation results show that our proposed scheme obtained the better lifetime and performance where compared with the traditional schemes in a fair environment.
37

Delay Limited Routing in Multi-hop Wireless Ad-Hoc Networks

Song, Jau-li 26 July 2006 (has links)
In this thesis, we proposed a delay limited routing scheme in wireless ad hoc networks. When nodes transmit packets in wireless ad hoc networks, most people think the one-hop way is better than the multi-hop way in reducing the delay time. Since most cases in wireless ad hoc networks are not single sources, we should consider at least two sources transmitting packets at the same time and then use the multi-hop way in order to reduce the energy consumption. We want to maximize the throughput with limited delay. Our contribution is to transform the optimal scheduling problem in wireless ad hoc networks to the classic maximum flow problem. The maximum flow approach does maximize the throughput and can get the optimal solution.
38

Optimal Cluster Partitioning for Wireless Sensor Networks with Cooperative MISO Scheme

Katayama, Masaaki, Yamazato, Takaya, Huang, Zheng January 2010 (has links)
No description available.
39

Multi-Route Coding in Wireless Multi-Hop Networks

OKADA, Hiraku, NAKAGAWA, Nobuyuki, WADA, Tadahiro, YAMAZATO, Takaya, KATAYAMA, Masaaki 05 1900 (has links)
No description available.
40

Intelligent EPD for Real-time Video Streaming over Multi-hop Ad Hoc Networks

Chi, Yung-shih 09 July 2008 (has links)
This thesis presents an intelligent early packet discard (I-EPD) for real-time video streaming over a multi-hop ad hoc network. In a multi-hop ad hoc network, the quality of transferring real-time video streams could be seriously degraded, since every intermediate node (IN) functionally like forwarding device does not possess large buffer and sufficient bandwidth. Even worse, a selected forwarding node could leave or power off unexpectedly which breaks the route to destination. Thus, a video packet temporarily buffered in intermediate nodes may exceed its time constraint when either a congested or failed link occurs; a stale video packet is useless even if it can reach destination after network traffic becomes smooth or failed route is reconfigured. In the proposed I-EPD, an IN can intelligently determine whether a buffered video packet should be discarded based on an estimated time constraint which is calculated from the RTP timestamps and the round trip time (RTT) measured by RTCP. For the purpose of validation, we implement the I-EPD scheme on a Linux-based embedded system. We compare the quality of video streams under different bit rates and different route repair time. In addition, we use PSNR to validate the quality of pictures from the aspect of application layer. The experimental results demonstrate that with I-EPD buffer utilization on IN can be more effectively used and unnecessary bandwidth wastage can be avoided.

Page generated in 0.0388 seconds