Spelling suggestions: "subject:"multiobject filtering"" "subject:"multisubject filtering""
1 |
Filtrage PHD multicapteur avec application à la gestion de capteurs / Multi-sensor PHD filtering with application to sensor managementDelande, Emmanuel 30 January 2012 (has links)
Le filtrage multiobjet est une technique de résolution du problème de détection et/ou suivi dans un contexte multicible. Cette thèse s'intéresse au filtre PHD (Probability Hypothesis Density), une célèbre approximation du filtre RFS (Random Finite Set) adaptée au cas où les observations sont le fruit d'un seul capteur. La première partie propose une construction rigoureuse du filtre PHD multicapteur exact et son expression simplifiée, sans approximation, grâce à un partitionnement joint de l'espace d'état des cibles et des capteurs. Avec cette nouvelle méthode, la solution exacte du filtre PHD multicapteur peut être propagée dans des scénarios de surveillance simples. La deuxième partie aborde le problème de gestion des capteurs dans le cadre du PHD. A chaque itération, le BET (Balanced Explorer and Tracker) construit une prédiction du PHD multicapteur a posteriori grâce au PIMS (Predicted Ideal Measurement Set) et définit un contrôle multicapteur en respectant quelques critères opérationnels simples adaptés aux missions de surveillance / The aim of multi-object filtering is to address the multiple target detection and/or tracking problem. This thesis focuses on the Probability Hypothesis Density (PHD) filter, a well-known tractable approximation of the Random Finite Set (RFS) filter when the observation process is realized by a single sensor. The first part proposes the rigorous construction of the exact multi-sensor PHD filter and its simplified expression, without approximation, through a joint partitioning of the target state space and the sensors. With this new method, the exact multi-sensor PHD can be propagated in simple surveillance scenarii. The second part deals with the sensor management problem in the PHD framework. At each iteration, the Balanced Explorer and Tracker (BET) builds a prediction of the posterior multi-sensor PHD thanks to the Predicted Ideal Measurement Set (PIMS) and produces a multi-sensor control according to a few simple operational principles adapted to surveillance activities
|
2 |
Random finite sets in Multi-object filteringVo, Ba Tuong January 2008 (has links)
[Truncated abstract] The multi-object filtering problem is a logical and fundamental generalization of the ubiquitous single-object vector filtering problem. Multi-object filtering essentially concerns the joint detection and estimation of the unknown and time-varying number of objects present, and the dynamic state of each of these objects, given a sequence of observation sets. This problem is intrinsically challenging because, given an observation set, there is no knowledge of which object generated which measurement, if any, and the detected measurements are indistinguishable from false alarms. Multi-object filtering poses significant technical challenges, and is indeed an established area of research, with many applications in both military and commercial realms. The new and emerging approach to multi-object filtering is based on the formal theory of random finite sets, and is a natural, elegant and rigorous framework for the theory of multiobject filtering, originally proposed by Mahler. In contrast to traditional approaches, the random finite set framework is completely free of explicit data associations. The random finite set framework is adopted in this dissertation as the basis for a principled and comprehensive study of multi-object filtering. The premise of this framework is that the collection of object states and measurements at any time are treated namely as random finite sets. A random finite set is simply a finite-set-valued random variable, i.e. a random variable which is random in both the number of elements and the values of the elements themselves. Consequently, formulating the multiobject filtering problem using random finite set models precisely encapsulates the essence of the multi-object filtering problem, and enables the development of principled solutions therein. '...' The performance of the proposed algorithm is demonstrated in simulated scenarios, and shown at least in simulation to dramatically outperform traditional single-object filtering in clutter approaches. The second key contribution is a mathematically principled derivation and practical implementation of a novel algorithm for multi-object Bayesian filtering, based on moment approximations to the posterior density of the random finite set state. The performance of the proposed algorithm is also demonstrated in practical scenarios, and shown to considerably outperform traditional multi-object filtering approaches. The third key contribution is a mathematically principled derivation and practical implementation of a novel algorithm for multi-object Bayesian filtering, based on functional approximations to the posterior density of the random finite set state. The performance of the proposed algorithm is compared with the previous, and shown to appreciably outperform the previous in certain classes of situations. The final key contribution is the definition of a consistent and efficiently computable metric for multi-object performance evaluation. It is shown that the finite set theoretic state space formulation permits a mathematically rigorous and physically intuitive construct for measuring the estimation error of a multi-object filter, in the form of a metric. This metric is used to evaluate and compare the multi-object filtering algorithms developed in this dissertation.
|
3 |
Algorithmes de restauration bayésienne mono- et multi-objets dans des modèles markoviens / Single and multiple object(s) Bayesian restoration algorithms for Markovian modelsPetetin, Yohan 27 November 2013 (has links)
Cette thèse est consacrée au problème d'estimation bayésienne pour le filtrage statistique, dont l'objectif est d'estimer récursivement des états inconnus à partir d'un historique d'observations, dans un modèle stochastique donné. Les modèles stochastiques considérés incluent principalement deux grandes classes de modèles : les modèles de Markov cachés et les modèles de Markov à sauts conditionnellement markoviens. Ici, le problème est abordé sous sa forme générale dans la mesure où nous considérons le problème du filtrage mono- et multi objet(s), ce dernier étant abordé sous l'angle de la théorie des ensembles statistiques finis et du filtre « Probability Hypothesis Density ». Tout d'abord, nous nous intéressons à l'importante classe d'approximations que constituent les algorithmes de Monte Carlo séquentiel, qui incluent les algorithmes d'échantillonnage d'importance séquentiel et de filtrage particulaire auxiliaire. Les boucles de propagation mises en jeux dans ces algorithmes sont étudiées et des algorithmes alternatifs sont proposés. Les algorithmes de filtrage particulaire dits « localement optimaux », c'est à dire les algorithmes d'échantillonnage d'importance avec densité d'importance conditionnelle optimale et de filtrage particulaire auxiliaire pleinement adapté sont comparés statistiquement, en fonction des paramètres du modèle donné. Ensuite, les méthodes de réduction de variance basées sur le théorème de Rao-Blackwell sont exploitées dans le contexte du filtrage mono- et multi-objet(s) Ces méthodes, utilisées principalement en filtrage mono-objet lorsque la dimension du vecteur d'état à estimer est grande, sont dans un premier temps étendues pour les approximations Monte Carlo du filtre Probability Hypothesis Density. D'autre part, des méthodes de réduction de variance alternatives sont proposées : bien que toujours basées sur le théorème de Rao-Blackwell, elles ne se focalisent plus sur le caractère spatial du problème mais plutôt sur son caractère temporel. Enfin, nous abordons l'extension des modèles probabilistes classiquement utilisés. Nous rappelons tout d'abord les modèles de Markov couple et triplet dont l'intérêt est illustré à travers plusieurs exemples pratiques. Ensuite, nous traitons le problème de filtrage multi-objets, dans le contexte des ensembles statistiques finis, pour ces modèles. De plus, les propriétés statistiques plus générales des modèles triplet sont exploitées afin d'obtenir de nouvelles approximations de l'estimateur bayésien optimal (au sens de l'erreur quadratique moyenne) dans les modèles à sauts classiquement utilisés; ces approximations peuvent produire des estimateurs de performances comparables à celles des approximations particulaires, mais ont l'avantage d'être moins coûteuses sur le plan calculatoire / This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in estimating hidden states from an historic of observations over time in a given stochastic model. The considered models include the popular Hidden Markov Chain models and the Jump Markov State Space Systems; in addition, the filtering problem is addressed under a general form, that is to say we consider the mono- and multi-object filtering problems. The latter one is addressed in the Random Finite Sets and Probability Hypothesis Density contexts. First, we focus on the class of particle filtering algorithms, which include essentially the sequential importance sampling and auxiliary particle filter algorithms. We explore the recursive loops for computing the filtering probability density function, and alternative particle filtering algorithms are proposed. The ``locally optimal'' filtering algorithms, i.e. the sequential importance sampling with optimal conditional importance distribution and the fully adapted auxiliary particle filtering algorithms, are statistically compared in function of the parameters of a given stochastic model. Next, variance reduction methods based on the Rao-Blackwell theorem are exploited in the mono- and multi-object filtering contexts. More precisely, these methods are mainly used in mono-object filtering when the dimension of the hidden state is large; so we first extend them for Monte Carlo approximations of the Probabilty Hypothesis Density filter. In addition, alternative variance reduction methods are proposed. Although we still use the Rao-Blackwell decomposition, our methods no longer focus on the spatial aspect of the problem but rather on its temporal one. Finally, we discuss on the extension of the classical stochastic models. We first recall pairwise and triplet Markov models and we illustrate their interest through several practical examples. We next address the multi-object filtering problem for such models in the random finite sets context. Moreover, the statistical properties of the more general triplet Markov models are used to build new approximations of the optimal Bayesian estimate (in the sense of the mean square error) in Jump Markov State Space Systems. These new approximations can produce estimates with performances alike those given by particle filters but with lower computational cost
|
Page generated in 0.0779 seconds