Spelling suggestions: "subject:"multiobjective evolutionary algorithms"" "subject:"multiobjectives evolutionary algorithms""
11 |
The role of communication messages and explicit niching in distributed evolutionary multi-objective optimizationBui, Lam Thu, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
Dealing with optimization problems with more than one objective has been an important research area in evolutionary computation. The class of multi-objective problems (MOPs) is an important one because multi-objectivity exists in almost all aspects of human life; whereby there usually exist several compromises in each problem. Multi-objective evolutionary algorithms (MOEAs) have been applied widely in many real-world problems. This is because (1) they work with a population during the course of action, which hence offer more flexible control to find a set of efficient solutions, and (2) real-world problems are usually black-box where an explicit mathematical representation is unknown. However, MOEAs usually require a large amount of computational effort. This is a sub- stantial challenge in bringing MOEAs to practice. This thesis primarily aims to address this challenge through an investigation into issues of scalability and the balance between exploration and exploitation. These have been outstanding research challenges, not only for MOEAs, but also for evolutionary algorithms in general. A distributed framework of local models using explicit niching is introduced as an overarching umbrella to solve multi-objective optimization problems. This framework is used to address the two-part question about first, the role of communication messages and second, the role of explicit niching in distributed evolutionary multi-objective optimization. The concept behind the framework of local models is for the search to be conducted locally in different areas of the decision search space, which allows the local models to be distributed on different processing nodes. During the optimization process, local models interact (exchange messages) with each other using rules inspired from Particle Swarm Optimization (PSO). Hence, the hypothesis of this work is that running simultaneously several search engines in different local areas is better for exploiting local information, while exchanging messages among those diverse engines can provide a better exploration strategy. For this framework, as the models work locally, they gain access to some global knowledge of each other. In order to validate the proposed framework, a series of experiments on a wide range of test problems was conducted. These experiments were motivated by the following studies which in their totality contribute to the verification of our hypothesis: (1) studying the performance of the framework under different aspects such as initialization, convergence, diversity, scalability, and sensitivity to the framework's parameters, (2) investigating interleaving guidance in both the decision and objective spaces, (3) applying local models using estimation of distributions, (4) evaluating local models in noisy environments and (5) the role of communication messages and explicit niching in distributed computing. The experimental results showed that: (1) the use of local models increases the chance of MOEAs to improve their performance in finding the Pareto optimal front, (2) interaction strategies using PSO rules are suitable for controlling local models, and that they also can be coupled with specialization in order to refine the obtained non-dominated set, (3) estimation of distribution improves when coupled with local models, (4) local models work well in noisy environments, and (5) the communication cost in distributed systems with local models can be reduced significantly by using summary information (such as the direction information naturally determined by local models) as the communication messages, in comparison with conventional approaches using descriptive information of individuals. In summary, the proposed framework is a successful step towards efficient distributed MOEAs.
|
12 |
Complex Co-evolutionary Systems Approach to the Management of Sustainable Grasslands - A case study in Mexico.Martinez-Garcia, Alejandro Nicolas Unknown Date (has links)
The complex co-evolutionary systems approach -CCeSA - provides a well-suited framework for analysing agricultural systems, serving as a bridge between physical and socioeconomic sciences, alowing for the explaination of phenomena, and for the use of metaphors for thinking and action. By studying agricultural systems as self-generated, hierarchical, complex co-evolutionary farming systems - CCeFSs -, one can investigate the interconnections between the elements that constitute CCeFSs, along with the relationships between CCeFSs and other sytems, as a fundamental step to understanding sustainability as an emergent property of the system. CCeFSs are defined as human activity systems emerging from the purposes, gestalt, mental models, history and weltanschauung of the farm manager, and from his dynamic co-evolution with the environment while managing the resources at his hand to achieve his own multiple, conflicting, dynamic, semi-structured, and often incommensurable and conflicting purposes while performing above thresholds for failure, and enough flexibility to dynamically co-evolve with its changing biophysical and socioeconomic environment for a given future period. Fitness and flexibility are essential features of sustainable CCeFSs because they describe the systems' dynamic capacity to explore and exploit their dynamic phase space while co-evolving with it. This implies that a sustainable CCeFS is conceived as a set of dynamic, co-evolutionary processes, contrasting with the standard view of sustainability as an equilibrium or steady-state. Achieving sustainable CCeFSs is a semi-structured, constrained, multi-objective and dynamic optimisation management problem, with an intractable search space, that can be solved within CCeSA with the help of a multi-objective co-evolutionary optimisation tool. Carnico-ICSPEA2, a co-evolutionary navigator - CoEvoNav -used as a CCeSA's tool for harnessing the complexity of the CCeFS of interest and its environment towards sustainability, is introduced. The software was designed by its end-user - the farm manager and author of this thesis - as an aid for the analysis and optimisation of the San Francisco ranch, a beef cattle enterprise running on temperate pastures and fodder crops in the Central Plateau of Mexico. By combining a non-linear simulator and a multi-objective evolutionary algorithm with a deterministic and stochastic framework, the CoEvoNav imitates the co-evolutionary pattern of the CCeFS of interest. As such, the software was used by the farm manager to navigate through his CCeFS's co-evolutionary phase space towards achieving sustainability at farm level. The ultimate goal was to enhance the farm manager's decision-making process and co-evolutionary skills, through an increased understanding of his system, the co-evolutionary process between his mental models, the CCeFS, and the CoEvoNav, and the continuous discovery of new, improved sets of heuristics. An overview of the methodological, theoretical and philosophical framework of the thesis is introduced. Also, a survey of the Mexican economy, its agricultural sector, and a statistical review of the Mexican beef industry is presented. Concepts such as modern agriculture, the reductionist approach to agricultural research, models, the system's environment, sustainability, conventional and sustainable agriculture, complexity, evolution, simulators, and multi-objective optimisation tools are extensively reviewed. Issues concerning the impossibility of predicting the long-term future behaviour of CCeFSs, along with the use of simulators as decision support tools in the quest for sustainable CCeFSs are discussed. The rationale behind the simulator used for this study, along with that of the multi-objective evolutionary tools used as a makeup of Carnico-ICSPEA2 are explained. A description of the San Francisco ranch, its key on-farm sustainability indicators in the form of objective functions, constraints, and decision variables, and the semi-structured, multi-objective, dynamic, constrained management problem posed by the farm manager's planned introduction of a herd of bulls for fattening as a way to increase the fitness of his CCeFS via a better management of the system's feed surpluses and the acquisition of a new pick-up truck are described as a case study. The tested scenario and the experimental design for the simulations are presented as well. Results from using the CoEvoNav as the farm manager's extended phenotype to solve his multi-objective optimisation problem are described, along with the implications for the management and sustainability of the CCeFS. Finally, the approach and tools developed are evaluated, and the progress made in relation to methodological, theoretical, philosophical and conceptual notions is reviewed along with some future topics for research.
|
13 |
Complex Co-evolutionary Systems Approach to the Management of Sustainable Grasslands - A case study in Mexico.Martinez-Garcia, Alejandro Nicolas Unknown Date (has links)
The complex co-evolutionary systems approach -CCeSA - provides a well-suited framework for analysing agricultural systems, serving as a bridge between physical and socioeconomic sciences, alowing for the explaination of phenomena, and for the use of metaphors for thinking and action. By studying agricultural systems as self-generated, hierarchical, complex co-evolutionary farming systems - CCeFSs -, one can investigate the interconnections between the elements that constitute CCeFSs, along with the relationships between CCeFSs and other sytems, as a fundamental step to understanding sustainability as an emergent property of the system. CCeFSs are defined as human activity systems emerging from the purposes, gestalt, mental models, history and weltanschauung of the farm manager, and from his dynamic co-evolution with the environment while managing the resources at his hand to achieve his own multiple, conflicting, dynamic, semi-structured, and often incommensurable and conflicting purposes while performing above thresholds for failure, and enough flexibility to dynamically co-evolve with its changing biophysical and socioeconomic environment for a given future period. Fitness and flexibility are essential features of sustainable CCeFSs because they describe the systems' dynamic capacity to explore and exploit their dynamic phase space while co-evolving with it. This implies that a sustainable CCeFS is conceived as a set of dynamic, co-evolutionary processes, contrasting with the standard view of sustainability as an equilibrium or steady-state. Achieving sustainable CCeFSs is a semi-structured, constrained, multi-objective and dynamic optimisation management problem, with an intractable search space, that can be solved within CCeSA with the help of a multi-objective co-evolutionary optimisation tool. Carnico-ICSPEA2, a co-evolutionary navigator - CoEvoNav -used as a CCeSA's tool for harnessing the complexity of the CCeFS of interest and its environment towards sustainability, is introduced. The software was designed by its end-user - the farm manager and author of this thesis - as an aid for the analysis and optimisation of the San Francisco ranch, a beef cattle enterprise running on temperate pastures and fodder crops in the Central Plateau of Mexico. By combining a non-linear simulator and a multi-objective evolutionary algorithm with a deterministic and stochastic framework, the CoEvoNav imitates the co-evolutionary pattern of the CCeFS of interest. As such, the software was used by the farm manager to navigate through his CCeFS's co-evolutionary phase space towards achieving sustainability at farm level. The ultimate goal was to enhance the farm manager's decision-making process and co-evolutionary skills, through an increased understanding of his system, the co-evolutionary process between his mental models, the CCeFS, and the CoEvoNav, and the continuous discovery of new, improved sets of heuristics. An overview of the methodological, theoretical and philosophical framework of the thesis is introduced. Also, a survey of the Mexican economy, its agricultural sector, and a statistical review of the Mexican beef industry is presented. Concepts such as modern agriculture, the reductionist approach to agricultural research, models, the system's environment, sustainability, conventional and sustainable agriculture, complexity, evolution, simulators, and multi-objective optimisation tools are extensively reviewed. Issues concerning the impossibility of predicting the long-term future behaviour of CCeFSs, along with the use of simulators as decision support tools in the quest for sustainable CCeFSs are discussed. The rationale behind the simulator used for this study, along with that of the multi-objective evolutionary tools used as a makeup of Carnico-ICSPEA2 are explained. A description of the San Francisco ranch, its key on-farm sustainability indicators in the form of objective functions, constraints, and decision variables, and the semi-structured, multi-objective, dynamic, constrained management problem posed by the farm manager's planned introduction of a herd of bulls for fattening as a way to increase the fitness of his CCeFS via a better management of the system's feed surpluses and the acquisition of a new pick-up truck are described as a case study. The tested scenario and the experimental design for the simulations are presented as well. Results from using the CoEvoNav as the farm manager's extended phenotype to solve his multi-objective optimisation problem are described, along with the implications for the management and sustainability of the CCeFS. Finally, the approach and tools developed are evaluated, and the progress made in relation to methodological, theoretical, philosophical and conceptual notions is reviewed along with some future topics for research.
|
14 |
Aplicação de algoritmos evolucionários à gestão integrada de sistemas de recursos hídricos. / The use of multi-objective evolucionary algorithms in water resource management.André Schardong 20 June 2011 (has links)
Esta tese estudou a aplicação de algoritmos evolucionários na análise multiobjetivo para gestão integrada de sistemas de recursos hídricos, bem como a sua integração à sistemas de suporte a decisão como o SSD AcquaNet e ModSim DSS. Dois algoritmos evolucionários multi-objetivo são desenvolvidos: MoDE-NS e MoPSO-NS e comparados ao NSGA-II. Os algoritmos foram desenvolvidos em forma de Sistema de Otimização que possibilita a análise de problemas multi-objetivo de forma generalizada com foco em sistemas de recursos hídricos. A possibilidade de integração com o SSD AcquaNet e o ModSim DSS via importação de rede de fluxo e a otimização conjunta, são apresentadas e exploradas. Uma ferramenta de visualização gráfica do conjunto de soluções não dominadas é incluída no Sistema de Otimização. Os algoritmos desenvolvidos foram aplicados a problemas de teste padrão para validação através da comparação de seus resultados ao NSGA-II. As possibilidades de aplicação do sistema de otimização e dos algoritmos evolucionários multi-objetivo foram exploradas inicialmente através de análise multi-objetivo do modelo chuva-vazão Smap com dois e cinco objetivos. Em seguida, a análise foi estendida a um sistema de recursos hídricos complexo, o Sistema Cantareira, responsável pelo abastecimento de aproximadamente metade da RMSP, que corresponde à aproximadamente 33 m³/s. A análise foi realizada comparando dois pares de funções objetivos envolvendo custos de energia elétrica, minimização de déficit no atendimento às demandas e minimização do desvio da qualidade da água em relação à Classe de enquadramento no rio Atibaia, a jusante do reservatório Atibainha e Cachoeira. Os resultados apontam que os algoritmos evolucionários multi-objetivo são aptos para aplicação na análise integrada de sistemas de recursos hídricos e representam uma boa alternativa aos métodos denominados clássicos, pelas suas características peculiares discutidas no trabalho. Algumas recomendações quanto ao uso dos algoritmos abordados para análise de problemas multi-objetivo foram apresentados. / This Thesis presents an application of evolutionary algorithms in multi-objective analysis for integrated management of water resources systems and their integration into decision support systems as AcquaNet and ModSim DSS. Two multi-objective evolutionary algorithms are developed: MoDE-NS-NS and MoPSO-NS and compared to NSGA-II. The algorithms are developed in the form of Optimization System which enables generalized multi-objective analysis with a focus on water resources systems. The possibilities for integration with AcquaNet and ModSim DSS, by importing network flow directly from them or by integrated optimization/simulation are also presented. A graphical visualization tool for the set of non-dominated solutions is also included in Optimization System. The algorithms are applied to common test problems set for validation by comparing its results to the NSGA-II. The possibilities of application of the developed Optimization System and multi-objective evolutionary algorithms are initially exploited by multi-objective analysis of a hydrological rainfall-runoff model Smap, with two and five objectives. Then, the analysis is extended to a complex water resources system, the Cantareira System, responsible for supplying nearly half of the Sao Paulo metro area, which corresponds to approximately 33 m³/s. The analysis is done by comparing two pairs of objective functions: minimization of demand shortage versus minimization of pumping cost and minimization of demand shortage versus minimization of the deviation from water quality standards. The results show that the multi-objective evolutionary algorithms are suitable for application to integrated analysis of water resources systems and represent a good alternative to the so called classical methods, for its peculiar characteristics discussed on this thesis. The MoDE-NS and MoPSO-NS developed, outperformed NSGA-II results, by obtaining a better coverage of the Pareto fronts especially on the water resources system case study.
|
15 |
Algoritmo evolutivo multiobjetivo em tabelas e matriz HΔ para projeto de sistemas de medição para estimação de estado / Multi-objective evolutionary algorithm in tables and HΔ matrix for metering system planning for state estimationVigliassi, Marcos Paulo 22 March 2017 (has links)
O problema de projeto de sistemas de medição, para efeito de Estimação de Estado em Sistemas Elétricos de Potência, é um problema de otimização multiobjetivo, combinatório, que exige a investigação de um grande número de possíveis soluções. Dessa forma, metaheurísticas vêm sendo empregadas para sua solução. Entretanto, a maioria delas trata o problema de forma mono-objetivo e as poucas que consideram uma formulação multiobjetivo, não contemplam todos os requisitos de desempenho que devem ser atendidos para obtenção de um Sistema de Medição Confiável (SMC) (observabilidade e ausência de Medidas Críticas, Conjuntos Críticos de Medidas, Unidades Terminais Remotas Críticas e Unidades de Medição Fasoriais Críticas). Propõe-se, nesta tese, uma formulação multiobjetivo para o problema de projeto de sistemas de medição de uma forma mais ampla, considerando todas requisitos de desempenho que devem ser atendidos para obtenção de um SMC. Propõe-se, ainda, o desenvolvimento e implantação, em computador, de um método para tratamento desse problema, considerando o trade-off entre os requisitos de desempenho e o custo, fazendo uso do conceito de Fronteira de Pareto. O método possibilita, em uma única execução, a obtenção de quatro tipos de sistemas de medição, a partir da análise de soluções não dominadas. O método permite o projeto de sistemas de medição novos e o aprimoramento de sistemas de medição já existentes, considerando a existência apenas de medidas convencionais SCADA, apenas de Medidas Fasoriais Sincronizadas ou a existência dos dois tipos de medidas. O método proposto faz uso de um Algoritmo Evolutivo Multiobjetivo e do procedimento de obtenção e análise da matriz HΔ. Esse procedimento permite a realização de uma Busca Local, minimizando o custo para atendimento de cada um dos requisitos de desempenho mencionados acima. Simulações são realizadas utilizando dados dos sistemas de 6, 14, 30, 118 e 300 barras do IEEE, bem como do sistema de 61 barras da Eletropaulo, de forma a ilustrar, testar e validar o método proposto. Alguns dos resultados dessas simulações são comparados com resultados obtidos por outros métodos encontrados na literatura. / Metering system planning for power system state estimation is a multi-objective, combinatorial optimization problem that may require the investigation of many possible solutions. As a consequence, meta-heuristics have been employed to solve the problem. However in the majority of them the multi-objective problem is converted in a mono-objective problem and those few considering a multi-objective formulation do not consider all the performance requirements that must be attended in order to obtain a Reliable Metering System (RMS) (system observability and absence of Critical Measurements, Critical Sets, Critical Remote Terminal Units and Critical Phasor Measurement Units). This thesis proposes a multi-objective formulation for the metering system planning problem in a wide way, that is, considering all the performance requirements that must be attended to obtain a RMS. This thesis also proposes the development and implementation, in computer, of a method to solve the metering system planning problem, considering the trade-off between the two conflicting objectives of the problem (minimizing cost while maximizing the performance requirements) making use of the concept of Pareto Frontier. The method allows, in only one execution, the project of four types of metering systems, from the analysis of non-dominated solutions. The method enable the design of new metering systems as well as the improvement of existing ones, considering the existence of only conventional SCADA measurements, or only synchronized phasor measurements or the existence of both types of measurements. The proposed method combines a multi-objective evolutionary algorithm based on subpopulation tables with the properties of the so-called HΔ matrix. The subpopulations tables adequately model several metering system performance requirements enabling a better exploration of the solution space. On the other hand, the properties of the HΔ matrix enable a local search that improves the evolutionary process and minimizes the computational effort. Simulations results with IEEE 6, 14, 30, 118 and 300-bus test systems and with a 61-bus system of Eletropaulo illustrate the efficiency of the proposed method. Some of the results of these simulations will be compared with those published in literature.
|
16 |
Algoritmo para obtenção de planos de restabelecimento para sistemas de distribuição de grande porte / Algorithm for elaboration of plans for service restoration to large-scale distribution systemsMansour, Moussa Reda 03 April 2009 (has links)
A elaboração de planos de restabelecimento de energia (PRE) de forma rápida, para re-energização de sistemas de distribuição radiais (SDR), faz-se necessária para lidar com situações que deixam regiões dos SDR sem energia. Tais situações podem ser causadas por faltas permanentes ou pela necessidade de isolar zonas dos SDR para serviços de manutenção. Dentre os objetivos de um PRE, destacam-se: (i) reduzir o número de consumidores interrompidos (ou nenhum), e (ii) minimizar o número de manobras; que devem ser atendidos sem desrespeitar os limites operacionais dos equipamentos. Conseqüentemente, a obtenção de PRE em SDR é um problema com múltiplos objetivos, alguns conflitantes. As principais técnicas desenvolvidas para obtenção de PRE em SDR baseiam-se em algoritmos evolutivos (AE). A limitação da maioria dessas técnicas é a necessidade de simplificações na rede, para lidar com SDR de grande porte, que limitam consideravelmente a possibilidade de obtenção de um PRE adequado. Propõe-se, neste trabalho, o desenvolvimento e implantação computacional de um algoritmo para obtenção de PRE em SDR, que consiga lidar com sistemas de grande porte sem a necessidade de simplificações, isto é, considerando uma grande parte (ou a totalidade) de linhas, barras, cargas e chaves do sistema. O algoritmo proposto baseia-se em um AE multi-objetivo e na estrutura de dados, para armazenamento de grafos, denominada representação nó-profundidade (RNP), bem como em dois operadores genéticos que foram desenvolvidos para manipular de forma eficiente os dados armazenados na RNP. Em razão de se basear em um AE multi-objetivo, o algoritmo proposto possibilita uma investigação mais ampla do espaço de busca. Por outro lado, fazendo uso da RNP, para representar computacionalmente os SDR, e de seus operadores genéticos, o algoritmo proposto aumenta significativamente a eficiência da busca por adequados PRE. Isto porque aqueles operadores geram apenas configurações radiais, nas quais todos os consumidores são atendidos. Para comprovar a eficiência do algoritmo proposto, várias simulações computacionais foram realizadas, utilizando o sistema de distribuição real, de uma companhia brasileira, que possui 3.860 barras, 635 chaves, 3 subestações e 23 alimentadores. / An elaborated and fast energy restoration plan (ERP) is required to deal with steady faults in radial distribution systems (RDS). That is, after a faulted zone has been identified and isolated by the relays, it is desired to elaborate a proper ERP to restore energy on that zone. Moreover, during the normal system operation, it is frequently necessary to elaborate ERP to isolate zones to execute routine tasks of network maintenance. Some of the objectives of an ERP are: (i) very few interrupted customers (or none), and (ii) operating a minimal number of switches, while at the same time respecting security constraints. As a consequence, the service restoration is a multiple objective problem, with some degree of conflict. The main methods developed for elaboration of ERP are based on evolutionary algorithms (EA). The limitation of the majority of these methods is the necessity of network simplifications to work with large-scale RDS. In general, these simplifications restrict the achievement of an adequate ERP. This work proposes the development and implementation of an algorithm for elaboration of ERP, which can deal with large-scale RDS without requiring network simplifications, that is, considering a large number (or all) of lines, buses, loads and switches of the system. The proposed algorithm is based on a multi-objective EA, on a new graph tree encoding called node-depth encoding (NDE), as well as on two genetic operators developed to efficiently manipulate a graph trees stored in NDEs. Using a multi-objective EA, the proposed algorithm enables a better exploration of the search space. On the other hand, using NDE and its operators, the efficiency of the search is increased when the proposed algorithm is used generating proper ERP, because those operators generate only radial configurations where all consumers are attended. The efficiency of the proposed algorithm is shown using a Brazilian distribution system with 3,860 buses, 635 switches, 3 substations and 23 feeders.
|
17 |
Algoritmo para obtenção de planos de restabelecimento para sistemas de distribuição de grande porte / Algorithm for elaboration of plans for service restoration to large-scale distribution systemsMoussa Reda Mansour 03 April 2009 (has links)
A elaboração de planos de restabelecimento de energia (PRE) de forma rápida, para re-energização de sistemas de distribuição radiais (SDR), faz-se necessária para lidar com situações que deixam regiões dos SDR sem energia. Tais situações podem ser causadas por faltas permanentes ou pela necessidade de isolar zonas dos SDR para serviços de manutenção. Dentre os objetivos de um PRE, destacam-se: (i) reduzir o número de consumidores interrompidos (ou nenhum), e (ii) minimizar o número de manobras; que devem ser atendidos sem desrespeitar os limites operacionais dos equipamentos. Conseqüentemente, a obtenção de PRE em SDR é um problema com múltiplos objetivos, alguns conflitantes. As principais técnicas desenvolvidas para obtenção de PRE em SDR baseiam-se em algoritmos evolutivos (AE). A limitação da maioria dessas técnicas é a necessidade de simplificações na rede, para lidar com SDR de grande porte, que limitam consideravelmente a possibilidade de obtenção de um PRE adequado. Propõe-se, neste trabalho, o desenvolvimento e implantação computacional de um algoritmo para obtenção de PRE em SDR, que consiga lidar com sistemas de grande porte sem a necessidade de simplificações, isto é, considerando uma grande parte (ou a totalidade) de linhas, barras, cargas e chaves do sistema. O algoritmo proposto baseia-se em um AE multi-objetivo e na estrutura de dados, para armazenamento de grafos, denominada representação nó-profundidade (RNP), bem como em dois operadores genéticos que foram desenvolvidos para manipular de forma eficiente os dados armazenados na RNP. Em razão de se basear em um AE multi-objetivo, o algoritmo proposto possibilita uma investigação mais ampla do espaço de busca. Por outro lado, fazendo uso da RNP, para representar computacionalmente os SDR, e de seus operadores genéticos, o algoritmo proposto aumenta significativamente a eficiência da busca por adequados PRE. Isto porque aqueles operadores geram apenas configurações radiais, nas quais todos os consumidores são atendidos. Para comprovar a eficiência do algoritmo proposto, várias simulações computacionais foram realizadas, utilizando o sistema de distribuição real, de uma companhia brasileira, que possui 3.860 barras, 635 chaves, 3 subestações e 23 alimentadores. / An elaborated and fast energy restoration plan (ERP) is required to deal with steady faults in radial distribution systems (RDS). That is, after a faulted zone has been identified and isolated by the relays, it is desired to elaborate a proper ERP to restore energy on that zone. Moreover, during the normal system operation, it is frequently necessary to elaborate ERP to isolate zones to execute routine tasks of network maintenance. Some of the objectives of an ERP are: (i) very few interrupted customers (or none), and (ii) operating a minimal number of switches, while at the same time respecting security constraints. As a consequence, the service restoration is a multiple objective problem, with some degree of conflict. The main methods developed for elaboration of ERP are based on evolutionary algorithms (EA). The limitation of the majority of these methods is the necessity of network simplifications to work with large-scale RDS. In general, these simplifications restrict the achievement of an adequate ERP. This work proposes the development and implementation of an algorithm for elaboration of ERP, which can deal with large-scale RDS without requiring network simplifications, that is, considering a large number (or all) of lines, buses, loads and switches of the system. The proposed algorithm is based on a multi-objective EA, on a new graph tree encoding called node-depth encoding (NDE), as well as on two genetic operators developed to efficiently manipulate a graph trees stored in NDEs. Using a multi-objective EA, the proposed algorithm enables a better exploration of the search space. On the other hand, using NDE and its operators, the efficiency of the search is increased when the proposed algorithm is used generating proper ERP, because those operators generate only radial configurations where all consumers are attended. The efficiency of the proposed algorithm is shown using a Brazilian distribution system with 3,860 buses, 635 switches, 3 substations and 23 feeders.
|
18 |
Algoritmo evolutivo multiobjetivo em tabelas e matriz HΔ para projeto de sistemas de medição para estimação de estado / Multi-objective evolutionary algorithm in tables and HΔ matrix for metering system planning for state estimationMarcos Paulo Vigliassi 22 March 2017 (has links)
O problema de projeto de sistemas de medição, para efeito de Estimação de Estado em Sistemas Elétricos de Potência, é um problema de otimização multiobjetivo, combinatório, que exige a investigação de um grande número de possíveis soluções. Dessa forma, metaheurísticas vêm sendo empregadas para sua solução. Entretanto, a maioria delas trata o problema de forma mono-objetivo e as poucas que consideram uma formulação multiobjetivo, não contemplam todos os requisitos de desempenho que devem ser atendidos para obtenção de um Sistema de Medição Confiável (SMC) (observabilidade e ausência de Medidas Críticas, Conjuntos Críticos de Medidas, Unidades Terminais Remotas Críticas e Unidades de Medição Fasoriais Críticas). Propõe-se, nesta tese, uma formulação multiobjetivo para o problema de projeto de sistemas de medição de uma forma mais ampla, considerando todas requisitos de desempenho que devem ser atendidos para obtenção de um SMC. Propõe-se, ainda, o desenvolvimento e implantação, em computador, de um método para tratamento desse problema, considerando o trade-off entre os requisitos de desempenho e o custo, fazendo uso do conceito de Fronteira de Pareto. O método possibilita, em uma única execução, a obtenção de quatro tipos de sistemas de medição, a partir da análise de soluções não dominadas. O método permite o projeto de sistemas de medição novos e o aprimoramento de sistemas de medição já existentes, considerando a existência apenas de medidas convencionais SCADA, apenas de Medidas Fasoriais Sincronizadas ou a existência dos dois tipos de medidas. O método proposto faz uso de um Algoritmo Evolutivo Multiobjetivo e do procedimento de obtenção e análise da matriz HΔ. Esse procedimento permite a realização de uma Busca Local, minimizando o custo para atendimento de cada um dos requisitos de desempenho mencionados acima. Simulações são realizadas utilizando dados dos sistemas de 6, 14, 30, 118 e 300 barras do IEEE, bem como do sistema de 61 barras da Eletropaulo, de forma a ilustrar, testar e validar o método proposto. Alguns dos resultados dessas simulações são comparados com resultados obtidos por outros métodos encontrados na literatura. / Metering system planning for power system state estimation is a multi-objective, combinatorial optimization problem that may require the investigation of many possible solutions. As a consequence, meta-heuristics have been employed to solve the problem. However in the majority of them the multi-objective problem is converted in a mono-objective problem and those few considering a multi-objective formulation do not consider all the performance requirements that must be attended in order to obtain a Reliable Metering System (RMS) (system observability and absence of Critical Measurements, Critical Sets, Critical Remote Terminal Units and Critical Phasor Measurement Units). This thesis proposes a multi-objective formulation for the metering system planning problem in a wide way, that is, considering all the performance requirements that must be attended to obtain a RMS. This thesis also proposes the development and implementation, in computer, of a method to solve the metering system planning problem, considering the trade-off between the two conflicting objectives of the problem (minimizing cost while maximizing the performance requirements) making use of the concept of Pareto Frontier. The method allows, in only one execution, the project of four types of metering systems, from the analysis of non-dominated solutions. The method enable the design of new metering systems as well as the improvement of existing ones, considering the existence of only conventional SCADA measurements, or only synchronized phasor measurements or the existence of both types of measurements. The proposed method combines a multi-objective evolutionary algorithm based on subpopulation tables with the properties of the so-called HΔ matrix. The subpopulations tables adequately model several metering system performance requirements enabling a better exploration of the solution space. On the other hand, the properties of the HΔ matrix enable a local search that improves the evolutionary process and minimizes the computational effort. Simulations results with IEEE 6, 14, 30, 118 and 300-bus test systems and with a 61-bus system of Eletropaulo illustrate the efficiency of the proposed method. Some of the results of these simulations will be compared with those published in literature.
|
19 |
A Complex Co-Evolutionary Systems Approach to the Management of Sustainable Grasslands: A Case Study in MexicoMartinez-Garcia, Alejandro N. Unknown Date (has links)
The complex co-evolutionary systems approach (CCeSA) provides a well-suited framework for analysing agricultural systems, serving as a bridge between biophysical and socioeconomic sciences, allowing for the explanation of phenomena, and for the use of metaphors for thinking and action. By studying agricultural systems as self-generated, hierarchical, complex co-evolutionary farming systems (CCeFSs), one can investigate the interconnections between the elements that constitute CCeFSs, along with the relationships between CCeFSs and other systems, as a fundamental step to understanding sustainability as an emergent property of the system. CCeFSs are defined as human activity systems emerging from the purposes, gestalt, mental models, history and weltanschauung of the farm manager, and from his dynamic co-evolution with the environment while managing the resources at his hand to achieve his own multiple, conflicting, dynamic, semi-structured and constrained purposes. A sustainable CCeFS is described as one that exhibits both enough fitness to achieve its multiple, dynamic, constrained, semi-structured, and often incommensurable and conflicting purposes while performing above threshold values for failure, and enough flexibility to dynamically co-evolve with its changing biophysical and socioeconomic environment for a given future period. Fitness and flexibility are essential features of sustainable CCeFSs because they describe the systems' dynamic capacity to explore and exploit its dynamic phase space while co-evolving with it. This implies that a sustainable CCeFS is conceived as a set of dynamic, co-evolutionary processes, contrasting with the standard view of sustainability as an equilibrium or steady state. Achieving sustainable CCeFSs is a semi-structured, constrained, multi-objective, and dynamic optimisation management problem with an intractable search phase space, that can be solved within the CCeSA with the help of a multi-objective co-evolutionary optimisation tool. Carnico-ICSPEA2, a Co-Evolutionary Navigator (CoEvoNav) used as a CCeSA's tool for harnessing the complexity of the CCeFS of interest and its environment towards sustainability, is introduced. The software was designed by its end-user - the farm manager and author of this thesis - as an aid for the analysis and optimisation of the "San Francisco" ranch, a beef cattle enterprise running on temperate pastures and fodder crops in the central plateau of Mexico. By combining a non-linear simulator and a multi-objective evolutionary algorithm with a deterministic and stochastic framework, the CoEvoNav imitates the co-evolutionary pattern of the CCeFS of interest. As such, the software was used by the farm manager to "navigate" through his CCeFS's co-evolutionary phase space towards achieving sustainability at farm level. The ultimate goal was to enhance the farm manager's decision-making process and co-evolutionary skills, through an increased understanding of his system, the co-evolutionary process between his mental models, the CCeFS, and the CoEvoNav, and the continuous discovery of new, improved sets of heuristics. An overview of the methodological, theoretical and philosophical framework of the thesis is introduced. Also, a survey of the Mexican economy, its agricultural sector, and a statistical review of the Mexican beef industry are presented. Concepts such as modern agriculture, the reductionist approach to agricultural research, models, the system's environment, sustainability, conventional and sustainable agriculture, complexity, evolution, simulators, and multi-objective optimization tools are extensively reviewed. Issues concerning the impossibility of predicting the long-term, detailed future behaviour of CCeFSs, along with the use of simulators as decision support tools in the quest for sustainable CCeFSs, are discussed. The rationale behind the simulator used for this study, along with that of the multi-objective evolutionary tools used as the makeup of Carnico-ICSPEA2, are explained. A description of the "San Francisco" ranch, its key on-farm sustainability indicators in the form of objective functions, constraints, and decision variables, and the semi-structured, multi-objective, dynamic, constrained management problem posed by the farm manager's planned introduction of a herd of bulls for fattening as a way to increase the fitness of his CCeFS via a better management of the system's feed surpluses and the acquisition of a new pick-up truck are described as a case study. The tested scenario and the experimental design for the simulations are presented as well. Results from using the CoEvoNav as the farm manager's extended phenotype to solve his multi-objective optimisation problem are described, along with the implications for the management and sustainability of the CCeFS. Finally, the approach and tools developed are evaluated, and the progress made in relation to methodological, theoretical, philosophical and conceptual notions is reviewed along with some future topics for research.
|
20 |
Interconnection Architecture of Proximity Smart IoE-Networks with Centralised ManagementGonzález Ramírez, Pedro Luis 07 April 2022 (has links)
[ES] La interoperabilidad entre los objetos comunicados es el objetivo principal del internet de las cosas (IoT). Algunos esfuerzos para lograrlo han generado diversas propuestas de arquitecturas, sin embargo, aún no se ha llegado a un conceso. Estas arquitecturas difieren en el tipo de estructura, grado de centralización, algoritmo de enrutamiento, métricas de enrutamiento, técnicas de descubrimiento, algoritmos de búsqueda, segmentación, calidad de servicio y seguridad, entre otros. Algunas son mejores que otras, dependiendo del entorno en el que se desempeñan y del tipo de parámetro que se use. Las más populares son las orientadas a eventos o acciones basadas en reglas, las cuales han permitido que IoT ingrese en el mercado y logre una rápida masificación. Sin embargo, su interoperabilidad se basa en alianzas entre fabricantes para lograr su compatibilidad. Esta solución se logra en la nube con una plataforma que unifica a las diferentes marcas aliadas. Esto permite la introducción de estas tecnologías a la vida común de los usuarios pero no resuelve problemas de autonomía ni de interoperabilidad. Además, no incluye a la nueva generación de redes inteligentes basadas en cosas inteligentes.
La arquitectura propuesta en esta tesis toma los aspectos más relevantes de las cuatro arquitecturas IoT más aceptadas y las integra en una, separando la capa IoT (comúnmente presente en estas arquitecturas), en tres capas. Además, está pensada para abarcar redes de proximidad (integrando diferentes tecnologías de interconexión IoT) y basar su funcionamiento en inteligencia artificial (AI). Por lo tanto, esta propuesta aumenta la posibilidad de lograr la interoperabilidad esperada y aumenta la funcionalidad de cada objeto en la red enfocada en prestar un servicio al usuario.
Aunque el sistema que se propone incluye el procesamiento de una inteligencia artificial, sigue los mismos aspectos técnicos que sus antecesoras, ya que su operación y comunicación continúan basándose en la capa de aplicación y trasporte de la pila de protocolo TCP/IP. Sin embargo, con el fin de aprovechar los protocolos IoT sin modificar su funcionamiento, se crea un protocolo adicional que se encapsula y adapta a su carga útil. Se trata de un protocolo que se encarga de descubrir las características de un objeto (DFSP) divididas en funciones, servicios, capacidades y recursos, y las extrae para centralizarla en el administrador de la red (IoT-Gateway). Con esta información el IoT-Gateway puede tomar decisiones como crear grupos de trabajo autónomos que presten un servicio al usuario y enrutar a los objetos de este grupo que prestan el servicio, además de medir la calidad de la experiencia (QoE) del servicio; también administra el acceso a internet e integra a otras redes IoT, utilizando inteligencia artificial en la nube.
Al basarse esta propuesta en un nuevo sistema jerárquico para interconectar objetos de diferente tipo controlados por AI con una gestión centralizada, se reduce la tolerancia a fallos y seguridad, y se mejora el procesamiento de los datos. Los datos son preprocesados en tres niveles dependiendo del tipo de servicio y enviados a través de una interfaz. Sin embargo, si se trata de datos sobre sus características estos no requieren mucho procesamiento, por lo que cada objeto los preprocesa de forma independiente, los estructura y los envía a la administración central.
La red IoT basada en esta arquitectura tiene la capacidad de clasificar un objeto nuevo que llegue a la red en un grupo de trabajo sin la intervención del usuario. Además de tener la capacidad de prestar un servicio que requiera un alto procesamiento (por ejemplo, multimedia), y un seguimiento del usuario en otras redes IoT a través de la nube. / [CA] La interoperabilitat entre els objectes comunicats és l'objectiu principal de la internet de les coses (IoT). Alguns esforços per aconseguir-ho han generat diverses propostes d'arquitectures, però, encara no s'arriba a un concens. Aquestes arquitectures difereixen en el tipus d'estructura, grau de centralització, algoritme d'encaminament, mètriques d'enrutament, tècniques de descobriment, algoritmes de cerca, segmentació, qualitat de servei i seguretat entre d'altres. Algunes són millors que altres depenent de l'entorn en què es desenvolupen i de el tipus de paràmetre que es faci servir. Les més populars són les orientades a esdeveniments o accions basades en regles. Les quals li han permès entrar al mercat i aconseguir una ràpida massificació. No obstant això, la seva interoperabilitat es basa en aliances entre fabricants per aconseguir la seva compatibilitat. Aquesta solució s'aconsegueix en el núvol amb una plataforma que unifica les diferents marques aliades. Això permet la introducció d'aquestes tecnologies a la vida comuna dels usuaris però no resol problemes d'autonomia ni d'interoperabilitat. A més, no inclou a la nova generació de xarxes intel·ligents basades en coses intel·ligents.
L'arquitectura proposada en aquesta tesi, pren els aspectes més rellevants de les quatre arquitectures IoT mes acceptades i les integra en una, separant la capa IoT (comunament present en aquestes arquitectures), en tres capes. A més aquesta pensada en abastar xarxes de proximitat (integrant diferents tecnologies d'interconnexió IoT) i basar el seu funcionament en intel·ligència artificial. Per tant, aquesta proposta augmenta la possibilitat d'aconseguir la interoperabilitat esperada i augmenta la funcionalitat de cada objecte a la xarxa enfocada a prestar un servei a l'usuari.
Tot i que el sistema que es proposa inclou el processament d'una intel·ligència artificial, segueix els mateixos aspectes tècnics que les seves antecessores, ja que, la seva operació i comunicació se segueix basant en la capa d'aplicació i transport de la pila de protocol TCP / IP. No obstant això, per tal d'aprofitar els protocols IoT sense modificar el seu funcionament es crea un protocol addicional que s'encapsula i s'adapta a la seva càrrega útil. Es tracta d'un protocol que s'encarrega de descobrir les característiques d'un objecte (DFSP) dividides en funcions, serveis, capacitats i recursos, i les extreu per centralitzar-la en l'administrador de la xarxa (IoT-Gateway). Amb aquesta informació l'IoT-Gateway pot prendre decisions com crear grups de treball autònoms que prestin un servei a l'usuari i encaminar als objectes d'aquest grup que presten el servei. A més de mesurar la qualitat de l'experiència (QoE) de el servei. També administra l'accés a internet i integra a altres xarxes Iot, utilitzant intel·ligència artificial en el núvol.
A l'basar-se aquesta proposta en un nou sistema jeràrquic per interconnectar objectes de diferent tipus controlats per AI amb una gestió centralitzada, es redueix la tolerància a fallades i seguretat, i es millora el processament de les dades. Les dades són processats en tres nivells depenent de el tipus de servei i enviats a través d'una interfície. No obstant això, si es tracta de dades sobre les seves característiques aquests no requereixen molt processament, de manera que cada objecte els processa de forma independent, els estructura i els envia a l'administració central.
La xarxa IoT basada en aquesta arquitectura té la capacitat de classificar un objecte nou que arribi a la xarxa en un grup de treball sense la intervenció de l'usuari. A més de tenir la capacitat de prestar un servei que requereixi un alt processament (per exemple multimèdia), i un seguiment de l'usuari en altres xarxes IoT a través del núvol. / [EN] Interoperability between communicating objects is the main goal of the Internet of Things (IoT). Efforts to achieve this have generated several architectures' proposals; however, no consensus has yet been reached. These architectures differ in structure, degree of centralisation, routing algorithm, routing metrics, discovery techniques, search algorithms, segmentation, quality of service, and security. Some are better than others depending on the environment in which they perform, and the type of parameter used. The most popular are those oriented to events or actions based on rules, which has allowed them to enter the market and achieve rapid massification. However, their interoperability is based on alliances between manufacturers to achieve compatibility. This solution is achieved in the cloud with a dashboard that unifies the different allied brands, allowing the introduction of these technologies into users' everyday lives but does not solve problems of autonomy or interoperability. Moreover, it does not include the new generation of smart grids based on smart things.
The architecture proposed in this thesis takes the most relevant aspects of the four most accepted IoT-Architectures and integrates them into one, separating the IoT layer (commonly present in these architectures) into three layers. It is also intended to cover proximity networks (integrating different IoT interconnection technologies) and base its operation on artificial intelligence (AI). Therefore, this proposal increases the possibility of achieving the expected interoperability and increases the functionality of each object in the network focused on providing a service to the user.
Although the proposed system includes artificial intelligence processing, it follows the same technical aspects as its predecessors since its operation and communication is still based on the application and transport layer of the TCP/IP protocol stack. However, in order to take advantage of IoT-Protocols without modifying their operation, an additional protocol is created that encapsulates and adapts to its payload. This protocol discovers the features of an object (DFSP) divided into functions, services, capabilities, and resources, and extracts them to be centralised in the network manager (IoT-Gateway). With this information, the IoT-Gateway can make decisions such as creating autonomous workgroups that provide a service to the user and routing the objects in this group that provide the service. It also measures the quality of experience (QoE) of the service. Moreover, manages internet access and integrates with other IoT-Networks, using artificial intelligence in the cloud.
This proposal is based on a new hierarchical system for interconnecting objects of different types controlled by AI with centralised management, reducing the fault tolerance and security, and improving data processing. Data is preprocessed on three levels depending on the type of service and sent through an interface. However, if it is data about its features, it does not require much processing, so each object preprocesses it independently, structures it and sends it to the central administration.
The IoT-Network based on this architecture can classify a new object arriving on the network in a workgroup without user intervention. It also can provide a service that requires high processing (e.g., multimedia), and user tracking in other IoT-Networks through the cloud. / González Ramírez, PL. (2022). Interconnection Architecture of Proximity Smart IoE-Networks with Centralised Management [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181892
|
Page generated in 0.1091 seconds