Spelling suggestions: "subject:"multiobjective natural optimization"" "subject:"multiobjectives natural optimization""
1 |
Otimização natural multiobjetivo como ferramenta para desvio mínimo de pontos de operação considerando restrições de segurançaFreire, Rene Cruz 29 June 2017 (has links)
Submitted by Patrícia Cerveira (pcerveira1@gmail.com) on 2017-06-13T15:56:56Z
No. of bitstreams: 1
Rene_Cruz_Freire.pdf: 5170376 bytes, checksum: 8c6b6dd8986d23b53ae99ba90dd69ef5 (MD5) / Approved for entry into archive by Biblioteca da Escola de Engenharia (bee@ndc.uff.br) on 2017-06-29T16:38:47Z (GMT) No. of bitstreams: 1
Rene_Cruz_Freire.pdf: 5170376 bytes, checksum: 8c6b6dd8986d23b53ae99ba90dd69ef5 (MD5) / Made available in DSpace on 2017-06-29T16:38:47Z (GMT). No. of bitstreams: 1
Rene_Cruz_Freire.pdf: 5170376 bytes, checksum: 8c6b6dd8986d23b53ae99ba90dd69ef5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Um dos temas de alta relevância para a sociedade atual é a qualidade do suprimento de energia elétrica, que deve ser ininterrupto, seguro e econômico. Para tal, é primordial que o sistema de potência esteja preparado para um possível defeito de algum equipamento da rede, mantendo a operação dentro dos patamares seguros, evitando os blecautes e todas as suas consequências para a sociedade. Isso pode ser feito através do redespacho das unidades geradoras, de modo a encontrar um ponto de operação que concilie segurança e economicidade, dois objetivos conflitantes, enquanto busca se afastar o mínimo possível do ponto de operação previamente estabelecido, via planejamento eletroenergético, para o sistema de potência em questão. Trata-se de uma abordagem multiobjetiva do Fluxo de Potência Ótimo com Restrições de Segurança (FPORS) que pode ser solucionada com uma abordagem de Computação Evolucionária (CE) com viés multiobjetivo. Neste trabalho, foram implementadas e comparadas duas meta-heurísticas evolutivas multiobjetivo: Nondominated Sorting Genetic Algorithm II (NSGA-II) e o Multi-objective Evolutionary Particle Swarm Optimization (MOEPSO). Os resultados dessas heurísticas também foram comparados com a abordagem mono-objetivo do mesmo problema. Os algoritmos foram implementados no MATLAB® e testados em um sistema-teste que simula as condições do Sistema Interligado Nacional (SIN). As heurísticas multiobjetivo foram comparadas através da metodologia de análise da Fronteira de Pareto (FP), onde é analisado qual método concilia melhor os objetivos de economia e segurança. Na primeira análise o NSGA-II saiu-se melhor, entretanto após a implementação de melhorias no algoritmo, o MOEPSO mostrou desempenho superior na segunda análise. Nas duas análises, o viés multiobjetivo mostrou-se superior ao mono-objetivo, na comparação através do critério de agregação de objetivos. Em relação ao tempo de simulação de cada método, o MOEPSO foi superior na primeira análise, já na segunda análise foi implementado um refinamento baseado no Fluxo de Potência Linearizado no FPORS, que baixou o tempo de simulação das duas heurísticas multiobjetivas em comparação com a primeira análise, e o MOEPSO teve o menor tempo de simulação. Na comparação com o viés mono-objetivo, apenas o NSGA-II teve tempo médio de simulação maior que o método mono-objetivo na primeira análise. Na segunda análise, todas as heurísticas multiobjetivo possuíam tempo de simulação menores que o método mono-objetivo. / One of the topics of high relevance to the today’s society is the quality of electric power supply, which must be uninterrupted, safe and economical. To this end, it is essential that the power system be prepared for a possible defect of some equipment from the network while maintaining operation within safe levels, avoiding blackouts and all its consequences for society. This can be done by redispatch of generating units, in order to find an operation point which conciliate security and economy, two conflicting objectives, while seeking to depart as little as possible of the operation point previously established in the energy planning for the power system in question. This is a multi-objective approach to Security Constrained Optimal Power Flow (SCOPF) that can be solved with an approach of Evolutionary Computation with multi-objective bias. In this work we were implemented and compared two multi-objective evolutionary meta-heuristics: Nondominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Particle Swarm Optimization (MOEPSO). The results of these heuristics were also compared with mono-objective approach to the same problem. The algorithms were implemented in MATLAB® and tested in a test-case that simulates the conditions of the Brazilian Sistema Interligado Nacional (National Interconnected System). The multi-objective heuristics were compared using the analysis methodology of the Pareto Frontier, where is analyzed which method is better to conciliate the economy and security objectives. In the first analysis the NSGA-II fared better, but after the implementation of improvements in the algorithm, the MOEPSO showed superior performance in the second analisys. In both analyzes, the multi-objective bias was superior to the mono-objective bias, in the comparison through objectives aggregation criteria. Concerning the simulation time of each method, the MOEPSO was superior in the first analysis, but in the second analysis was implemented a refinement based on DC Load Flow, which lowered the simulation time of the two multi-objective heuristics compared with the first analysis, and the MOEPSO had the shortest time simulation. Compared to the mono-objective bias, only the NSGA-II had an average time simulation greater than the mono-objective method in the first analysis. In the second analysis, all multi-objectives heuristics had simulation time smaller than the mono-objective method.
|
Page generated in 0.0978 seconds