Spelling suggestions: "subject:"multistage attack"" "subject:"multistage attack""
1 |
A framework for correlation and aggregation of security alerts in communication networks : a reasoning correlation and aggregation approach to detect multi-stage attack scenarios using elementary alerts generated by Network Intrusion Detection Systems (NIDS) for a global security perspectiveAlserhani, Faeiz January 2011 (has links)
The tremendous increase in usage and complexity of modern communication and network systems connected to the Internet, places demands upon security management to protect organisations' sensitive data and resources from malicious intrusion. Malicious attacks by intruders and hackers exploit flaws and weakness points in deployed systems through several sophisticated techniques that cannot be prevented by traditional measures, such as user authentication, access controls and firewalls. Consequently, automated detection and timely response systems are urgently needed to detect abnormal activities by monitoring network traffic and system events. Network Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS) are technologies that inspect traffic and diagnose system behaviour to provide improved attack protection. The current implementation of intrusion detection systems (commercial and open-source) lacks the scalability to support the massive increase in network speed, the emergence of new protocols and services. Multi-giga networks have become a standard installation posing the NIDS to be susceptible to resource exhaustion attacks. The research focuses on two distinct problems for the NIDS: missing alerts due to packet loss as a result of NIDS performance limitations; and the huge volumes of generated alerts by the NIDS overwhelming the security analyst which makes event observation tedious. A methodology for analysing alerts using a proposed framework for alert correlation has been presented to provide the security operator with a global view of the security perspective. Missed alerts are recovered implicitly using a contextual technique to detect multi-stage attack scenarios. This is based on the assumption that the most serious intrusions consist of relevant steps that temporally ordered. The pre- and post- condition approach is used to identify the logical relations among low level alerts. The alerts are aggregated, verified using vulnerability modelling, and correlated to construct multi-stage attacks. A number of algorithms have been proposed in this research to support the functionality of our framework including: alert correlation, alert aggregation and graph reduction. These algorithms have been implemented in a tool called Multi-stage Attack Recognition System (MARS) consisting of a collection of integrated components. The system has been evaluated using a series of experiments and using different data sets i.e. publicly available datasets and data sets collected using real-life experiments. The results show that our approach can effectively detect multi-stage attacks. The false positive rates are reduced due to implementation of the vulnerability and target host information.
|
2 |
A framework for correlation and aggregation of security alerts in communication networks. A reasoning correlation and aggregation approach to detect multi-stage attack scenarios using elementary alerts generated by Network Intrusion Detection Systems (NIDS) for a global security perspective.Alserhani, Faeiz January 2011 (has links)
The tremendous increase in usage and complexity of modern communication and network systems connected to the Internet, places demands upon security management to protect organisations¿ sensitive data and resources from malicious intrusion. Malicious attacks by intruders and hackers exploit flaws and weakness points in deployed systems through several sophisticated techniques that cannot be prevented by traditional measures, such as user authentication, access controls and firewalls. Consequently, automated detection and timely response systems are urgently needed to detect abnormal activities by monitoring network traffic and system events. Network Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS) are technologies that inspect traffic and diagnose system behaviour to provide improved attack protection.
The current implementation of intrusion detection systems (commercial and open-source) lacks the scalability to support the massive increase in network speed, the emergence of new protocols and services. Multi-giga networks have become a standard installation posing the NIDS to be susceptible to resource exhaustion attacks. The research focuses on two distinct problems for the NIDS: missing alerts due to packet loss as a result of NIDS performance limitations; and the huge volumes of generated alerts by the NIDS overwhelming the security analyst which makes event observation tedious.
A methodology for analysing alerts using a proposed framework for alert correlation has been presented to provide the security operator with a global view of the security perspective. Missed alerts are recovered implicitly using a contextual technique to detect multi-stage attack scenarios. This is based on the assumption that the most serious intrusions consist of relevant steps that temporally ordered. The pre- and post- condition approach is used to identify the logical relations among low level alerts. The alerts are aggregated, verified using vulnerability modelling, and correlated to construct multi-stage attacks. A number of algorithms have been proposed in this research to support the functionality of our framework including: alert correlation, alert aggregation and graph reduction. These algorithms have been implemented in a tool called Multi-stage Attack Recognition System (MARS) consisting of a collection of integrated components. The system has been evaluated using a series of experiments and using different data sets i.e. publicly available datasets and data sets collected using real-life experiments. The results show that our approach can effectively detect multi-stage attacks. The false positive rates are reduced due to implementation of the vulnerability and target host information.
|
3 |
Multi-stage attack detection: emerging challenges for wireless networksLefoane, Moemedi, Ghafir, Ibrahim, Kabir, Sohag, Awan, Irfan U. 03 February 2023 (has links)
Yes / Multi-stage attacks (MSAs) are among the most serious threats in cyberspace today. Criminals target big organisations and government critical infrastructures mainly for financial gain. These attacks are becoming more advanced and stealthier, and thus have capabilities to evade Intrusion Detection Systems (IDSs). As a result, the attack strategies used in the attack render IDSs ineffective, particularly because of new security challenges introduced by some of the key emerging technologies such as 5G wireless networks, cloud computing infrastructure and Internet of Things (IoT), Advanced persistent threats (APTs) and botnet attacks are examples of MSAs, these are serious threats on the Internet. This work analyses recent MSAs, outlines and reveals open issues, challenges and opportunities with existing detection methods.
|
4 |
Latent Dirichlet Allocation for the Detection of Multi-Stage AttacksLefoane, Moemedi, Ghafir, Ibrahim, Kabir, Sohag, Awan, Irfan U. 19 December 2023 (has links)
No / The rapid shift and increase in remote access to
organisation resources have led to a significant increase in the
number of attack vectors and attack surfaces, which in turn
has motivated the development of newer and more sophisticated
cyber-attacks. Such attacks include Multi-Stage Attacks (MSAs).
In MSAs, the attack is executed through several stages. Classifying malicious traffic into stages to get more information about
the attack life-cycle becomes a challenge. This paper proposes a
malicious traffic clustering approach based on Latent Dirichlet
Allocation (LDA). LDA is a topic modelling approach used in
natural language processing to address similar problems. The
proposed approach is unsupervised learning and therefore will
be beneficial in scenarios where traffic data is not labeled and
analysis needs to be performed. The proposed approach uncovers
intrinsic contexts that relate to different categories of attack
stages in MSAs. These are vital insights needed across different
areas of cybersecurity teams like Incident Response (IR) within
the Security Operations Center (SOC), the insights uncovered
could have a positive impact in ensuring that attacks are detected
at early stages in MSAs. Besides, for IR, these insights help to
understand the attack behavioural patterns and lead to reduced
time in recovery following an incident. The proposed approach is
evaluated on a publicly available MSAs dataset. The performance
results are promising as evidenced by over 99% accuracy in
identified malicious traffic clusters.
|
Page generated in 0.0523 seconds