• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelization and identification of multi-step cyberattacks in sets of events / Modélisation et identification de cyberattaques multi-étapes dans des ensembles d'événements

Navarro Lara, Julio 14 March 2019 (has links)
Une cyberattaque est considérée comme multi-étapes si elle est composée d’au moins deux actions différentes. L’objectif principal de cette thèse est aider l’analyste de sécurité dans la création de modèles de détection à partir d’un ensemble de cas alternatifs d’attaques multi-étapes. Pour répondre à cet objectif, nous présentons quattre contributions de recherche. D’abord, nous avons réalisé la première bibliographie systématique sur la détection d’attaques multi-étapes. Une des conclusions de cette bibliographie est la manque de méthodes pour confirmer les hypothèses formulées par l’analyste de sécurité pendant l’investigation des attaques multi-étapes passées. Ça nous conduit à la deuxième de nos contributions, le graphe des scénarios d’attaques abstrait ou AASG. Dans un AASG, les propositions alternatives sur les étapes fondamentales d’une attaque sont répresentées comme des branches pour être évaluées avec l’arrivée de nouveaux événements. Pour cette évaluation, nous proposons deux modèles, Morwilog et Bidimac, qui font de la détection au même temps que l’identification des hypothèses correctes. L’évaluation des résultats par l’analyste permet l’évolution des modèles.Finalement, nous proposons un modèle pour l’investigation visuel des scénarios d’attaques sur des événements non traités. Ce modèle, qui s’appelle SimSC, est basé sur la similarité entre les adresses IP, en prenant en compte la distance temporelle entre les événements. / A cyberattack is considered as multi-step if it is composed of at least two distinct actions. The main goal of this thesis is to help the security analyst in the creation of detection models from a set of alternative multi-step attack cases. To meet this goal, we present four research contributions. First of all, we have conducted the first systematic survey about multi-step attack detection. One of the conclusions of this survey is the lack of methods to confirm the hypotheses formulated by the security analyst during the investigation of past multi-step attacks. This leads us to the second of our contributions, the Abstract Attack Scenario Graph or AASG. In an AASG, the alternative proposals about the fundamental steps in an attack are represented as branches to be evaluated on new incoming events. For this evaluation, we propose two models, Morwilog and Bidimac, which perform detection and identification of correct hypotheses. The evaluation of the results by the analyst allows the evolution of the models. Finally, we propose a model for the visual investigation of attack scenarios in non-processed events. This model, called SimSC, is based on IP address similarity, considering the temporal distance between the events.
2

Abstracting and correlating heterogeneous events to detect complex scenarios

Panichprecha, Sorot January 2009 (has links)
The research presented in this thesis addresses inherent problems in signaturebased intrusion detection systems (IDSs) operating in heterogeneous environments. The research proposes a solution to address the difficulties associated with multistep attack scenario specification and detection for such environments. The research has focused on two distinct problems: the representation of events derived from heterogeneous sources and multi-step attack specification and detection. The first part of the research investigates the application of an event abstraction model to event logs collected from a heterogeneous environment. The event abstraction model comprises a hierarchy of events derived from different log sources such as system audit data, application logs, captured network traffic, and intrusion detection system alerts. Unlike existing event abstraction models where low-level information may be discarded during the abstraction process, the event abstraction model presented in this work preserves all low-level information as well as providing high-level information in the form of abstract events. The event abstraction model presented in this work was designed independently of any particular IDS and thus may be used by any IDS, intrusion forensic tools, or monitoring tools. The second part of the research investigates the use of unification for multi-step attack scenario specification and detection. Multi-step attack scenarios are hard to specify and detect as they often involve the correlation of events from multiple sources which may be affected by time uncertainty. The unification algorithm provides a simple and straightforward scenario matching mechanism by using variable instantiation where variables represent events as defined in the event abstraction model. The third part of the research looks into the solution to address time uncertainty. Clock synchronisation is crucial for detecting multi-step attack scenarios which involve logs from multiple hosts. Issues involving time uncertainty have been largely neglected by intrusion detection research. The system presented in this research introduces two techniques for addressing time uncertainty issues: clock skew compensation and clock drift modelling using linear regression. An off-line IDS prototype for detecting multi-step attacks has been implemented. The prototype comprises two modules: implementation of the abstract event system architecture (AESA) and of the scenario detection module. The scenario detection module implements our signature language developed based on the Python programming language syntax and the unification-based scenario detection engine. The prototype has been evaluated using a publicly available dataset of real attack traffic and event logs and a synthetic dataset. The distinct features of the public dataset are the fact that it contains multi-step attacks which involve multiple hosts with clock skew and clock drift. These features allow us to demonstrate the application and the advantages of the contributions of this research. All instances of multi-step attacks in the dataset have been correctly identified even though there exists a significant clock skew and drift in the dataset. Future work identified by this research would be to develop a refined unification algorithm suitable for processing streams of events to enable an on-line detection. In terms of time uncertainty, identified future work would be to develop mechanisms which allows automatic clock skew and clock drift identification and correction. The immediate application of the research presented in this thesis is the framework of an off-line IDS which processes events from heterogeneous sources using abstraction and which can detect multi-step attack scenarios which may involve time uncertainty.

Page generated in 0.056 seconds