Spelling suggestions: "subject:"multisurface environments"" "subject:"multisurfaces environments""
1 |
'Designeering Interaction': un chaînon manquant dans l'évolution de l'Interaction Homme-MachineHuot, Stéphane 07 May 2013 (has links) (PDF)
Human Computer Interaction (HCI) is a fascinating research field because of its multidisciplinary nature, combining such diverse research domains as design, human factors and computer science as well as a variety of methods including empirical and theoretical research. HCI is also fascinating because it is still young and so much is left to discover, invent and understand. The evolution of computers, and more generally of interactive systems, is not frozen, and so are the ways in which we interact with them. From desktop computers, to mobile devices, to large displays or multi-surface environments, technology extends the possibles, needs initiate technologies, and HCI is thus a constantly moving field. The variety of challenges to address, as well as their underlying combinations of sub-domains (design, computer science, experimental psychology, sociology, etc.), imply that we should also adapt, question and sometimes reinvent our research methods and processes, pushing the limits of HCI research further. Since I entered the field 12 years ago, my research activities have essentially revolved around two main themes: the design, implementation and evaluation of novel interaction techniques (on desktop computers, mobile devices and multi- surface environments) and the engineering of interactive systems (models and toolkits for advanced input and interaction). Over time, I realized that I had entered a loop between these two concerns, going back and forth between design- ing and evaluating new interaction techniques, and defining and implementing new software architectures or toolkits. I observed that they strongly influence each other: The design of interaction techniques informs on the capabilities and limitations of the platform and the software being used, and new architectures and software tools open the way to new designs and possibilities. Through the discussion of several of my research contributions in these fields, this document investigates how interaction design challenges technology, and how technology - or engineering of interactive systems - could support and unleash interaction design. These observations will lead to a first definition of the "Designeering Interaction" conceptual framework that encompasses the specificities of these two fields and builds a bridge between them, paving the way to new research perspectives. In particular, I will discuss which types of tools, from the system level to the end user, should be designed, implemented and studied in order to better support interaction design along the evolution of interactive systems. At a more general level, Designeering Interaction is also a contribution that, I hope, will help better "understand how HCI works with technology".
|
2 |
Cross-display object movement in multi-display environmentsNacenta Sanchez, Miguel Angel 09 February 2010 (has links)
Many types of multi-display environments (MDEs) are emerging that allow users to better interact with computers. In these environments, being able to move visual objects (such as window icons or the cursor) from one display to another is a fundamental activity.
This dissertation focuses on understanding how human performance of cross-display actions is affected by the design of cross-display object movement interaction techniques. Three main aspects of cross-display actions are studied: how displays are referred to by the system and the users, how spatial actions are planned, and how actions are executed. Each of these three aspects is analyzed through laboratory experiments that provide empirical evidence on how different characteristics of interaction techniques affect performance.
The results further our understanding of cross-display interaction and can be used by designers of new MDEs to create more efficient multi-display interfaces.
|
3 |
Co-located collaboration in interactive spaces for preliminary designJones, Alistair 05 December 2013 (has links) (PDF)
The preliminary design phase occurs near the launch of an engineering project, normally after an initial requirements gathering phase. Through a series of meetingswhich gathers the key actors of a project, effective preliminary design involves discussion and decision-making punctuated by group creativity techniques. These activities are designed to explore the potential solutions of the problem, such asbrainstorming or causal analysis, or to address the project itself, such as collaborative project planning. Such activities are usually conducted in traditional meeting rooms with pen and paper media, which requires significant time and effort to prepare, perform, and later render into a digitally exploitable format. These processes have resisted previous attempts of computer-supported solutions, because any additional instruments risk obstructing the natural collaboration and workflow that make these activities so beneficial. Over the past decade, technologies such as interactive table tops, interactive wall displays, speech recognition software, 3D motion sensing cameras, and handheld tablets and smartphones have experienced significant advances in maturity. Theirform factors resemble the physical configuration of traditional pen-and-paper environments,while their "natural" input devices (based on multi-touch, gestures, voice, tangibles, etc.) allow them to leverage a user's pre-existing verbal, spatial,social, motor and cognitive skills. Researchers hypothesize that having these devices working in concert inside interactive spaces could augment collaboration forco-located (i.e. physically present) groups of users.There currently exist several interactive spaces in the literature, illustrating awide range of potential hardware configurations and interaction techniques. The goal of this thesis is first to explore what qualities these interactive spaces should exhibit in their interaction design, particularly with regard to preliminary designactivities, and second, to investigate how their heterogeneous and distributed computing devices can be unified into a flexible and extensible distributed computing architecture. The first main contribution of this thesis is an extensive presentation of an interactive space, which at its core uses a configuration not yet fully explored inprevious literature : a large multitouch table top and a large multitouch interactive Abstract board display. The design of this interactive space is driven by observations o fgroups engaged in preliminary design activities in traditional environments and a literature review aimed at extracting user-centered design guide lines. Special consideration is given to the user interface as it extends across multiple shared displays, and maintains a separation of concerns regarding personal and group work. Finally, evaluations using groups of five and six users show that using such an interactive space, coupled with our proposed multi-display interaction techniques, leads to a more effective construction of the digital artifacts used in preliminary design.The second main contribution of this thesis is a multi-agent infrastructure forthe distributed computing environment which effectively accommodates a widerange of platforms and devices in concerted interaction. By using agent-oriented programming and by establishing a common content language for messaging, the infrastructure is especially tolerant of network faults and suitable for rapid prototyping of heterogeneous devices in the interactive space.
|
4 |
Co-located collaboration in interactive spaces for preliminary design / Collaboration co-localisée dans un espace interactif pour la conception préliminaireJones, Alistair 05 December 2013 (has links)
La phase de conception préliminaire est déterminante lors de la réalisation d’un projet industriel. Elle exploite généralement des outils méthodologiques tels que le brainstorming, l’analyse causale et le chronogramme, qui permettent la collaboration entre des participants aux compétences et aux approches différentes. Ces activités se déroulent dans des salles de réunions traditionnelles, autour d'une table ou devant un tableau blanc, avec l’aide de nombreux papiers et Post-it, ce qui rend la préparation, l’exécution, et l’exploitation de ce processus particulièrement difficile. Jusqu’à présent, cette phase de conception préliminaire a résisté à la numérisation, notamment parce que l’addition d’un dispositif informatique au sein de ces activités perturbe la communication et la collaboration naturelles entre participants. Au cours des dix dernières années, de nombreuses avancées technologiques ont été réalisées en ce qui concerne les dispositifs numériques tels que les tables et les tableaux interactifs, les smartphones et les tablettes tactiles. La similarité des configurations physiques de ces dispositifs avec les dispositifs plus traditionnels permet d’exploiter les capacités préexistantes des utilisateurs (l’habileté motrice, le raisonnement spatial, le langage parlé, etc.). Les chercheurs se basent sur l’hypothèse que ces nouveaux dispositifs, travaillant de concert au sein d’espaces interactifs, pourront augmenter la collaboration co-localisée pour les équipes de conception préliminaire. L’objectif de cette thèse est, d’une part, d’étudier la conception d’un espace interactif pour la collaboration co-localisée durant la phase de conception préliminaire, et d’autre part, de proposer une architecture permettant de réunir les dispositifs hétérogènes et distribués composant cet espace.La première contribution consiste en une présentation détaillée d’un espace interactif utilisant une configuration physique encore peu exploitée dans la littérature scientifique : une table et un tableau multi-tactiles de grandes dimensions. La conception de cet espace interactif a été basée sur des observations d’utilisateurs dans un contexte de conception préliminaire traditionnel et sur une revue de la littérature visant à identifier des principes de conception. Lors de la conception de cet espace, une attention particulière a été portée à l’interface utilisateur qui s’étend sur des écrans partagés et qui maintient une séparation entre les activités d’un participant et les activités d’une équipe. Enfin, les évaluations, réalisées avec des groupes de cinq à six participants, démontrent une amélioration dans l’exploitation des outils méthodologiques sur supports numériques par rapport à une utilisation traditionnelle lors de la conception préliminaire.La conception d’une infrastructure distribuée basée sur un système multi-agents constitue la deuxième contribution de cette thèse. Cette infrastructure parvient à rassembler de nombreuses plateformes et des dispositifs hétérogènes. Elle représente une solution intéressante pour les espaces interactifs, en particulier parce qu’elle tolère particulièrement bien la défaillance de réseau et permet un prototypage rapide des dispositifs. / The preliminary design phase occurs near the launch of an engineering project, normally after an initial requirements gathering phase. Through a series of meetingswhich gathers the key actors of a project, effective preliminary design involves discussion and decision-making punctuated by group creativity techniques. These activities are designed to explore the potential solutions of the problem, such asbrainstorming or causal analysis, or to address the project itself, such as collaborative project planning. Such activities are usually conducted in traditional meeting rooms with pen and paper media, which requires significant time and effort to prepare, perform, and later render into a digitally exploitable format. These processes have resisted previous attempts of computer-supported solutions, because any additional instruments risk obstructing the natural collaboration and workflow that make these activities so beneficial. Over the past decade, technologies such as interactive table tops, interactive wall displays, speech recognition software, 3D motion sensing cameras, and handheld tablets and smartphones have experienced significant advances in maturity. Theirform factors resemble the physical configuration of traditional pen-and-paper environments,while their “natural” input devices (based on multi-touch, gestures, voice, tangibles, etc.) allow them to leverage a user’s pre-existing verbal, spatial,social, motor and cognitive skills. Researchers hypothesize that having these devices working in concert inside interactive spaces could augment collaboration forco-located (i.e. physically present) groups of users.There currently exist several interactive spaces in the literature, illustrating awide range of potential hardware configurations and interaction techniques. The goal of this thesis is first to explore what qualities these interactive spaces should exhibit in their interaction design, particularly with regard to preliminary designactivities, and second, to investigate how their heterogeneous and distributed computing devices can be unified into a flexible and extensible distributed computing architecture. The first main contribution of this thesis is an extensive presentation of an interactive space, which at its core uses a configuration not yet fully explored inprevious literature : a large multitouch table top and a large multitouch interactive Abstract board display. The design of this interactive space is driven by observations o fgroups engaged in preliminary design activities in traditional environments and a literature review aimed at extracting user-centered design guide lines. Special consideration is given to the user interface as it extends across multiple shared displays, and maintains a separation of concerns regarding personal and group work. Finally, evaluations using groups of five and six users show that using such an interactive space, coupled with our proposed multi-display interaction techniques, leads to a more effective construction of the digital artifacts used in preliminary design.The second main contribution of this thesis is a multi-agent infrastructure forthe distributed computing environment which effectively accommodates a widerange of platforms and devices in concerted interaction. By using agent-oriented programming and by establishing a common content language for messaging, the infrastructure is especially tolerant of network faults and suitable for rapid prototyping of heterogeneous devices in the interactive space.
|
Page generated in 0.0793 seconds