Spelling suggestions: "subject:"multiway delay"" "subject:"multiway relay""
1 |
Analysis and Improvement of Achievable Data Rates in Multi-Way Relay ChannelsNoori, Moslem Unknown Date
No description available.
|
2 |
Iterative receiver in multiuser relaying systems with fast frequency-hopping modulation2013 August 1900 (has links)
In this thesis, a novel iterative receiver and its improved version are proposed for
relay-assisted multiuser communications, in which multiple users transmit to a destination
with the help of a relay and using fast frequency-hopping modulation. Each
user employs a channel encoder to protect its information and facilitate interference
cancellation at the receiver. The signal received at the relay is either amplified, or
partially decoded with a simple energy detector, before being forwarded to the destination.
Under flat Rayleigh fading channels, the receiver at the destination can
be implemented non-coherently, i.e., it does not require the instantaneous channel
information to demodulate the users’ transmitted signals. The proposed iterative
algorithm at the destination exploits the soft outputs of the channel decoders to
successively extract the maximum likelihood symbols of the users and perform interference
cancellation. The iterative method is successfully applied for both cases of
amplify-and-forward and partial decode-and-forward relaying. The error performance
of the proposed iterative receiver is investigated by computer simulation. Under the
same spectral efficiency, simulation results demonstrate the excellent performance of
the proposed receiver when compared to the performance of decoding without interference
cancellation as well as the performance of the maximum likelihood multiuser
detection previously developed for uncoded transmission. Simulation results also suggest
that a proper selection of channel coding schemes can help to support significant
more users without consuming extra system resources.
In addition, to further enhance the receiver’s performance in terms of the bit error
rate, an improved version of the iterative receiver is presented. Such an improved receiver
invokes inner-loop iterations between the channel decoders and the demappers
in such a way that the soft outputs of the channel decoders are also used to refine the
outputs of the demappers for every outer-loop iteration. Simulation results indicate
a performance gain of about 2.5dB by using the two-loop receiver when compared to
the performance of the first proposed receiver.
|
3 |
Signal design for multi-way relay channelsSharifian, Shaham 20 December 2016 (has links)
Today’s communication systems are in need of spectrally efficient and high throughput
techniques more than ever because of high data rate applications and the scarcity
and expense of bandwidth. To cope with increased data rate demands, more base
stations are needed which is not cost and energy efficient in cellular networks. It
has been shown that wireless relay networks can provide higher network throughput
and increase power efficiency with low complexity and cost. Furthermore, network
resources can be utilized more efficiently by using network coding in relay networks.
A wireless relay network in which multiple nodes exchange information with the
help of relay node(s) is called a multi-way relay channel (MWRC). MWRCs are
expected to be an integral part of next generation wireless standards. The main
focus of this dissertation is the investigation of transmission schemes in an MWRC to
improve the throughput and error performance. An MWRC with full data exchange
is assumed in which a half-duplex relay station (RS) is the enabler of communication.
One of the challenges with signal demodulation in MWRCs is the existence of
ambiguous points in the received constellation. The first part of this dissertation
investigates a transmission scheme for full data exchange in MWRC that benefits from
these points and improves its throughput by 33% compared to traditional relaying.
Then an MWRC is considered where a RS assists multiple nodes to exchange messages.
A different approach is taken to avoid ambiguous points in the superposition of
user symbols at the relay. This can be achieved by employing complex field network
coding (CFNC) which results in full data exchange in two communication phases.
CFNC may lead to small Euclidean distances between constellation points, resulting
in poor error performance. To improve this performance, the optimal user precoding
values are derived such that the power efficiency of the relay constellation is highest
when channel state information is available at the users. The error performance of
each user is then analyzed and compared with other relaying schemes.
Finally, focusing on the uplink of multi-way relay systems, the performance of an
MWRC is studied in which users can employ arbitrary modulation schemes and the
links between the users and the relay have different gains, e.g. Rayleigh fading. Analytical
expressions for the exact average pairwise error probability of these MWRCs
are derived. The probability density function (PDF) and the mean of the minimum
Euclidean distance of the relay constellation are closely approximated, and a tight
upper bound on the symbol error probability is developed. / Graduate
|
Page generated in 0.0397 seconds