Spelling suggestions: "subject:"multicellular tumour spheroids"" "subject:"multicel·lular tumour spheroids""
1 |
The biological and therapeutic significance of tumour necrosis : identification and characterisation of viable cells from the necrotic core of multicellular tumour spheroids provides evidence of a new micro-environmental niche that has biological and therapeutic significanceEvans, Charlotte Louise January 2014 (has links)
Tumour necrosis has long been associated with poor prognosis and reduced survival in cancer. Hypotheses to explain this include the idea that as aggressive tumours tend to grow rapidly, they outgrow their blood supply leading to areas of hypoxia and subsequently necrosis. However whilst this and similar hypotheses have been put forward to explain the association, the biological significance of the cells which make up necrotic tissue has been largely ignored. This stems from the belief that because a tumour is more aggressive and fast growing it develops areas of necrosis, rather than, the tumour is more aggressive because it contains areas of necrosis. Which came first like the egg and chicken is yet to be determined, however to date most research has only considered the possibility of the former. Viable cells were found in the necrotic core of Multicellular Tumour Spheroids. When examined these cells were found to be different to the original cell line in terms of proliferation, migration, and chemosensitivity. A proteomic analysis showed that these phenotypical changes were accompanied by changes in a large number of proteins within the cells, some of which could be potential therapeutic targets. Furthermore this has led to a new hypothesis for tumour necrosis and its association with poor prognosis. Necrotic tissue provides a microenvironemental niche for cells with increased survival capabilities. Protected from many chemotherapeutics by their non-proliferative status once conditions improve these cells can return to proliferation and repopulate the tumour with an increasingly aggressive population of cells.
|
2 |
Measuring redox potential in 3D breast cancer tumour models using SERS nanosensorsJamieson, Lauren Elizabeth January 2016 (has links)
Cellular redox potential is incredibly important for the control and regulation of a vast number of processes occurring in cells. Disruption of the fine redox balance within cells is has been associated with disease. Of particular interest to my research is the redox gradient that develops in cancer tumours, in which the internal regions are further from vascular blood supply and therefore become starved of oxygen and hypoxic. This makes treatment of these areas a lot more challenging, as radiotherapy approaches rely on the presence of oxygen and, with a poor vascular blood supply, drugs delivered through the blood stream will have poor access to these regions. Currently, there is limited knowledge regarding the quantitative nature of this redox gradient in cancerous tumours. To aid the development of drugs and therapies to overcome this problem, a system that enables quantitative mapping of redox potential through a tumour would be a vital tool. In this work redox sensitive molecules attached to gold nanoparticles (NPs) are delivered to cells and give signals using surface enhanced Raman scattering (SERS). Redox potential changes are monitored quantitatively by ratiometric changes in signal intensity of selected signals in the SER spectra acquired. Multicellular tumour spheroids (MTS) are used as a three dimensional (3D) in vitro tumour model, in which the 3D architecture and gradients observed in tumours in vivo develop. As redox potential is pH dependent and pH is another important physiological characteristic in its own right, a SERS pH sensor was developed and ultimately a system that multiplexes intracellular pH and redox measurement by SERS. Initially, simultaneous redox potential and pH measurements were performed in monolayer culture before extending this to MTS. Photothermal optical coherence tomography (OCT) was used to investigate overall 3D NP distribution in the MTS models. It was possible to control NP delivery to MTS to localise NPs to various regions. Redox potential and pH could then be measured using a fibre optic Raman probe, and spatial response to drug treatment monitored. Intracellular NP localisation was investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), helium ion microscopy (HIM) and confocal fluorescence microscopy (CFM) and attempts were made to control NP delivery to particular intracellular compartments.
|
3 |
The Distribution of Platinum Complexes in Biological SystemsAlderden, Rebecca January 2006 (has links)
Doctor of Philosophy (PhD) / The toxicity of platinum anticancer drugs presents a major obstacle in the effective treatment of tumours. Much of the toxicity stems from a lack of specificity of the drugs for the sites at which they are able to exert maximum anticancer activity. An improved understanding of the behaviour of the drugs in the tumour environment may assist in the rational design of future platinum anticancer agents with enhanced specificity and reduced toxicity. In the work presented herein, the specificity of two classes of platinum anticancer agents was assessed (platinum(IV) cisplatin analogues and platinum(II) anthraquinone complexes). The interaction of the platinum(IV) agents with DNA, believed to be their main cellular target, was examined using XANES spectroscopy. This experiment was designed to assess the ability of the drugs to interact with DNA and thus exert their anticancer activity. It was shown that the platinum(IV) complexes were not reduced by DNA during 48 hr incubation. It was not possible to conclusively determine whether the interaction of the complexes with DNA was direct or platinum(II) catalysed, or whether interaction had occurred at all. The distribution of platinum(II) anthraquinone complexes and their corresponding anthraquinone ligands in tumour cells (A2780 ovarian and DLD-1 colon cancer cell lines) was investigated. The cytotoxicity of the compounds in DLD-1 cells was also assessed. It was found that the compounds were efficiently taken up into the cells and entered the lysosomal compartments almost exclusively. This suggested that the cytotoxicity of the drugs was caused by lysosomal disruption, or that the platinum complexes were degraded, leaving a platinum species to enter the cell nuclei and interact with DNA. Alternatively, the complexes may bind to proteins and transport into the nuclei of the cells, though with their fluorescence quenched by the protein. The penetration and distribution of platinum(IV) complexes was assessed in DLD-1 multicellular tumour spheroids (established models of solid tumours) using a number of synchrotron techniques, including micro-tomography, micro-SRIXE, and micro-XANES. The complexes were found to be capable of penetrating throughout the entire volume of the spheroids. Micro-XANES indicated that in central and peripheral spheroidal regions, bound platinum species were present largely as platinum(II).
|
4 |
The Distribution of Platinum Complexes in Biological SystemsAlderden, Rebecca January 2006 (has links)
Doctor of Philosophy (PhD) / The toxicity of platinum anticancer drugs presents a major obstacle in the effective treatment of tumours. Much of the toxicity stems from a lack of specificity of the drugs for the sites at which they are able to exert maximum anticancer activity. An improved understanding of the behaviour of the drugs in the tumour environment may assist in the rational design of future platinum anticancer agents with enhanced specificity and reduced toxicity. In the work presented herein, the specificity of two classes of platinum anticancer agents was assessed (platinum(IV) cisplatin analogues and platinum(II) anthraquinone complexes). The interaction of the platinum(IV) agents with DNA, believed to be their main cellular target, was examined using XANES spectroscopy. This experiment was designed to assess the ability of the drugs to interact with DNA and thus exert their anticancer activity. It was shown that the platinum(IV) complexes were not reduced by DNA during 48 hr incubation. It was not possible to conclusively determine whether the interaction of the complexes with DNA was direct or platinum(II) catalysed, or whether interaction had occurred at all. The distribution of platinum(II) anthraquinone complexes and their corresponding anthraquinone ligands in tumour cells (A2780 ovarian and DLD-1 colon cancer cell lines) was investigated. The cytotoxicity of the compounds in DLD-1 cells was also assessed. It was found that the compounds were efficiently taken up into the cells and entered the lysosomal compartments almost exclusively. This suggested that the cytotoxicity of the drugs was caused by lysosomal disruption, or that the platinum complexes were degraded, leaving a platinum species to enter the cell nuclei and interact with DNA. Alternatively, the complexes may bind to proteins and transport into the nuclei of the cells, though with their fluorescence quenched by the protein. The penetration and distribution of platinum(IV) complexes was assessed in DLD-1 multicellular tumour spheroids (established models of solid tumours) using a number of synchrotron techniques, including micro-tomography, micro-SRIXE, and micro-XANES. The complexes were found to be capable of penetrating throughout the entire volume of the spheroids. Micro-XANES indicated that in central and peripheral spheroidal regions, bound platinum species were present largely as platinum(II).
|
5 |
The biological and therapeutic significance of tumour necrosis. Identification and characterisation of viable cells from the necrotic core of multicellular tumour spheroids provides evidence of a new micro-environmental niche that has biological and therapeutic significanceEvans, Charlotte L. January 2014 (has links)
Tumour necrosis has long been associated with poor prognosis and reduced survival in cancer. Hypotheses to explain this include the idea that as aggressive tumours tend to grow rapidly, they outgrow their blood supply leading to areas of hypoxia and subsequently necrosis. However whilst this and similar hypotheses have been put forward to explain the association, the biological significance of the cells which make up necrotic tissue has been largely ignored. This stems from the belief that because a tumour is more aggressive and fast growing it develops areas of necrosis, rather than, the tumour is more aggressive because it contains areas of necrosis. Which came first like the egg and chicken is yet to be determined, however to date most research has only considered the possibility of the former. Viable cells were found in the necrotic core of Multicellular Tumour Spheroids. When examined these cells were found to be different to the original cell line in terms of proliferation, migration, and chemosensitivity. A proteomic analysis showed that these phenotypical changes were accompanied by changes in a large number of proteins within the cells, some of which could be potential therapeutic targets. Furthermore this has led to a new hypothesis for tumour necrosis and its association with poor prognosis. Necrotic tissue provides a microenvironemental niche for cells with increased survival capabilities. Protected from many chemotherapeutics by their non-proliferative status once conditions improve these cells can return to proliferation and repopulate the tumour with an increasingly aggressive population of cells. / Yorkshire Cancer Research
|
6 |
Differential membrane-type matrix metalloproteinase expression in phenotypically defined breast cancer cell lines: Comparison of MT-MMP expression in environmentally-challenged 2D monolayer cultures and 3D multicellular tumour spheroidsKashtl, Ghasaq J. January 2018 (has links)
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases capable of digesting the extracellular matrix (ECM), which is essential for tissue structure and transmitting messages between cells. MMPs play an important role in cancer, controlling cell migration, proliferation, apoptosis, regulation of tumour expansion, angiogenesis and invasion. Previous research has indicated high expression of MT1-MMP in breast cancers suggesting a potential role in tumour progression. Our results confirm that 3D multicellular tumour spheroids (MCTS) using phenotype-specific breast cancer cell lines are a valuable experimental model of the tumour microenvironment.
Optimisation of MCTS culture growth conditions using different breast cancer cell lines (MCF-7, T47D, MDA-MB-468 and MDA-MB-231) was performed. Unexpected detection of MT1-MMP in MCF-7 MCTS warranted further investigation. MT1-MMP expression in different micro-environmental conditions, including hypoxia and nutrient deprivation (serum-free induced autophagy) were measured in MCF-7 monolayer cultures and MCTS models using immunofluorescence (IF), immunohistochemistry (IHC) and western blot (WB).
MT1-MMP expression was rapidly and irreversibly up-regulated in MCF-7 breast cancer cells under conditions of stress (hypoxia and autophagy) compared to normal conditions suggesting an important role of the culture environment on cells behaviour and protein expression.
We employed isobaric tags for relative and absolute quantitation (iTRAQ) technology to correlate MT1-MMP increase with proteomic profiles in MCF-7 breast cancer cell grown under hypoxic, serum-free and 3D MCTS conditions. More than 3500 proteins were identified, which were clustered into groups based on response to unique or shared microenvironment changes. Hypoxic monolayer and spheroid cells exhibited changes in anaerobic metabolism and lipid synthesis, respectively, whereas autophagy resulted in up-regulation of cellular component disassembly. The result indicated multiple drivers of MT1-MMP expression in MCF-7 cells. / Al-Mstansiriya University, Iraq
|
7 |
Investigating the effects of chemotherapy and radiation therapy in a prostate cancer model system using SERS nanosensorsCamus, Victoria Louise January 2016 (has links)
Intracellular redox potential (IRP) is a measure of how oxidising or reducing the environment is within a cell. It is a function of numerous factors including redox couples, antioxidant enzymes and reactive oxygen species. Disruption of the tightly regulated redox status has been linked to the initiation and progression of cancer. However, there is very limited knowledge about the quantitative nature of the redox potential and pH gradients that exist in cancer tumour models. Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments, similar to those found in tumours. From the necrotic core to the outer proliferating layer there exist gradients of oxygen, lactate, pH and drug penetration. Tumours also have inadequate vasculature resulting in a state of hypoxia. Hypoxia is a key player in metabolic dysregulation but can also provide cells with resistance against cancer treatments, particularly chemotherapy and radiation therapy. The primary hypoxia regulators are HIFs (Hypoxia Inducible Factors) which under low O2 conditions bind a hypoxia response element, inhibiting oxidative phosphorylation and upregulating glycolysis which has two significant implications: the first is an increase in levels of NADPH/NADH, the main electron donors found in cells which impacts the redox state, whilst the second is a decrease in intracellular pH (pHi) because of increased lactate production. Thus, redox state and intracellular pHi can be used as indicators of metabolic changes within 3D cultures and provide insight into cellular response to therapy. Surface-Enhanced Raman Spectroscopy (SERS) provides a real-time, high resolution method of measuring pHi and IRP in cell culture. It allows for quick and potentially portable analysis of MTS, providing a new platform for monitoring response to drugs and therapy in an unobtrusive manner. Redox and pH-active probes functionalised to Au nanoshells were readily taken up by prostate cancer cell lines and predominantly found to localise in the cytosol. These probes were characterised by density functional theory and spectroelectrochemistry, and their in vitro behaviour modelled by the chemical induction of oxidative and reductive stress. Next, targeting nanosensors to different zones of the MTS allowed for spatial quantification of redox state and pHi throughout the structure and the ability to map the effects of drug treatments on MTS redox biology. The magnitude of the potential gradient can be quantified as free energy (ΔG) and used as a measurement of MTS viability. Treatment of PC3 MTS with staurosporine, an apoptosis inducer, was accompanied by a decrease in free energy gradients over time, whereas treatment of MTS with cisplatin, a drug to which they are resistant, showed an increase in viability indicating a compensatory mechanism and hence resistance. Finally, using this technique the effects of ionising radiation on IRP and pHi in the tumour model was explored. Following exposure to a range of doses of x-ray radiation, as well as single and multi-fractionated regimes, IRP and pHi were measured and MTS viability assessed. Increased radiation dosage diminished the potential gradient across the MTS and decreased viability. Similarly, fractionation of a single large dose was found to enhance MTS death. This novel SERS approach therefore has the potential to not only be used as a mode of drug screening and tool for drug development, but also for pre-clinical characterisation of tumours enabling clinicians to optimise radiation regimes in a patient-specific manner.
|
Page generated in 0.1026 seconds