• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local Structure and Dynamics of Exciton-Coupled Cyanine Dimers Labeled in DNA

Kringle, Loni 06 September 2018 (has links)
Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biological systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the local structure and excited state dynamics of excitonically coupled cyanine dimers that are rigidly positioned within the sugar-phosphate backbones of the DNA. Dimer probes were positioned within the double-stranded DNA duplex and at the single-strand/double-stranded DNA junction to examine the positional dependence of the structural variation and fluctuations. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the dimer probe locally within their respective DNA environments. We show that the exciton-coupling strength of the dimer-DNA construct can be systematically varied with temperature below the double-stranded – single-strand DNA denaturation transition. Using time-resolve 2DFS measurements we observed long lived vibronic coherences in the system. The properties of the cyanine DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled biomolecular arrays. This dissertation contains previously published and unpublished co-authored material.

Page generated in 0.1578 seconds