• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 95
  • 56
  • 40
  • 28
  • 23
  • 22
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 751
  • 237
  • 228
  • 145
  • 134
  • 114
  • 98
  • 98
  • 98
  • 75
  • 71
  • 69
  • 67
  • 61
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Multidisciplinary Design Optimization of a Morphing Wingtip Concept with Multiple Morphing Stages at Cruise

Leahy, Michael 03 December 2013 (has links)
Morphing an aircraft wingtip can provide substantial performance improvement. Most civil transport aircraft are optimized for range but for other flight conditions such as take-off and climb they are used as constraints. These constraints could potentially reduce the performance of an aircraft at cruise. By altering the shape of the wingtip, we can force the load distribution to adapt to the required flight condition to improve performance. Using a Variable Geometry Truss Mechanism (VGTM) concept to morph the wingtip of an aircraft with a Multidisciplinary Design Optimization (MDO) framework, the current work will attempt to find an optimal wing and wingtip shape to minimize fuel consumption for multiple morphing stages during cruise. This optimization routine was conducted with a Particle Swarm Optimization (PSO) algorithm using different fidelity tools to analyze the aerodynamic and structural disciplines.
82

Multidisciplinary Design Optimization of a Morphing Wingtip Concept with Multiple Morphing Stages at Cruise

Leahy, Michael 03 December 2013 (has links)
Morphing an aircraft wingtip can provide substantial performance improvement. Most civil transport aircraft are optimized for range but for other flight conditions such as take-off and climb they are used as constraints. These constraints could potentially reduce the performance of an aircraft at cruise. By altering the shape of the wingtip, we can force the load distribution to adapt to the required flight condition to improve performance. Using a Variable Geometry Truss Mechanism (VGTM) concept to morph the wingtip of an aircraft with a Multidisciplinary Design Optimization (MDO) framework, the current work will attempt to find an optimal wing and wingtip shape to minimize fuel consumption for multiple morphing stages during cruise. This optimization routine was conducted with a Particle Swarm Optimization (PSO) algorithm using different fidelity tools to analyze the aerodynamic and structural disciplines.
83

Object oriented paradigm for optimization model enhancement

Cimtalay, Selçuk 12 1900 (has links)
No description available.
84

Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design

Munjulury, Venkata Raghu Chaitanya January 2014 (has links)
With the ever growing complexity of aircrafts, new tools and eventually methods to use these tools are needed in aircraft conceptual design. To reduce the development cost, an enhancement in the conceptual design is needed. This thesis presents a knowledge-based aircraft geometry design tool RAPID and the methodology applied in realizing the design. The parameters used to create a geometry need to be exchange between different tools. This is achieved by using a centralized database or onedata concept. One-database will enable creating a less number of cross connections between different tools to exchange data with one another. Different types of aircraft configurations can be obtained with less effort. As RAPID is developed based on relational design, any changes made to the geometric model will update automatically. The geometry model is carefully defined to carry over to the preliminary design. The validation of RAPID is done by implementing it in different aircraft design courses at Linköping University. In the aircraft project course, RAPID was effectively used and new features were added to the obtained desired design. Knowledge-base is used to realize the design performance for the geometry with an integrated database approach for a multidisciplinary aircraft conceptual design.
85

Multidisciplinary Design Optimization of A Highly Flexible Aeroservoelastic Wing

Haghighat, Sohrab 21 August 2012 (has links)
A multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design for a highly-deformable wing. The objective of this framework is to surpass the existing aircraft endurance limits through the use of an active load alleviation system designed concurrently with the rest of the aircraft. The novelty of this work is two fold. First, a unified dynamics framework is developed to represent the full six-degree-of-freedom rigid-body along with the structural dynamics. It allows for an integrated control design to account for both manoeuvrability (flying quality) and aeroelasticity criteria simultaneously. Secondly, by synthesizing the aircraft control system along with the structural sizing and aerodynamic shape design, the final design has the potential to exploit synergies among the three disciplines and yield higher performing aircraft. A co-rotational structural framework featuring Euler--Bernoulli beam elements is developed to capture the wing's nonlinear deformations under the effect of aerodynamic and inertial loadings. In this work, a three-dimensional aerodynamic panel code, capable of calculating both steady and unsteady loadings is used. Two different control methods, a model predictive controller (MPC) and a 2-DOF mixed-norm robust controller, are considered in this work to control a highly flexible aircraft. Both control techniques offer unique advantages that make them promising for controlling a highly flexible aircraft. The control system works towards executing time-dependent manoeuvres along with performing gust/manoeuvre load alleviation. The developed framework is investigated for demonstration in two design cases: one in which the control system simply worked towards achieving or maintaining a target altitude, and another where the control system is also performing load alleviation. The use of the active load alleviation system results in a significant improvement in the aircraft performance relative to the optimum result without load alleviation. The results show that the inclusion of control system discipline along with other disciplines at early stages of aircraft design improves aircraft performance. It is also shown that structural stresses due to gust excitations can be better controlled by the use of active structural control systems which can improve the fatigue life of the structure.
86

Automatic Implementation of Multidisciplinary Design Optimization Architectures Using piMDO

Marriage, Christopher 24 February 2009 (has links)
Automatic Implementation of Multidisciplinary Design Optimization Architectures Using piMDO Christopher Marriage Masters of Applied Science Graduate Department of Aerospace Engineering University of Toronto 2008 Multidisciplinary Design Optimization (MDO) provides optimal solutions to complex, coupled, multidisciplinary problems. MDO seeks to manage the interactions between disciplinary simulations to produce an optimum, and feasible, design with a minimum of computational effort. Many MDO architectures and approaches have been developed, but usually in isolated situations with little chance for comparison. piMDO was developed to provide a unified framework for the solution of coupled op- timization problems and refinement of MDO approaches. The initial implementation of piMDO showed the benefits of a modular, object oriented, approach and laid the groundwork for future development of MDO architectures. This research furthered the development of piMDO by expanding the suite of available problems, incorporat- ing additional MDO architectures, and extending the object oriented approach to all of the required components for MDO. The end result is a modular, flexible software framework which is user friendly and intuitive to the practitioner. It allows complex problems to be quickly implemented and optimized with a variety of powerful numerical tools and MDO architectures. Importantly, it allows any of its components to be reorganized and sets the stage for future researchers to continue the development of MDO methods.
87

Multidisciplinary Design Optimization of A Highly Flexible Aeroservoelastic Wing

Haghighat, Sohrab 21 August 2012 (has links)
A multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design for a highly-deformable wing. The objective of this framework is to surpass the existing aircraft endurance limits through the use of an active load alleviation system designed concurrently with the rest of the aircraft. The novelty of this work is two fold. First, a unified dynamics framework is developed to represent the full six-degree-of-freedom rigid-body along with the structural dynamics. It allows for an integrated control design to account for both manoeuvrability (flying quality) and aeroelasticity criteria simultaneously. Secondly, by synthesizing the aircraft control system along with the structural sizing and aerodynamic shape design, the final design has the potential to exploit synergies among the three disciplines and yield higher performing aircraft. A co-rotational structural framework featuring Euler--Bernoulli beam elements is developed to capture the wing's nonlinear deformations under the effect of aerodynamic and inertial loadings. In this work, a three-dimensional aerodynamic panel code, capable of calculating both steady and unsteady loadings is used. Two different control methods, a model predictive controller (MPC) and a 2-DOF mixed-norm robust controller, are considered in this work to control a highly flexible aircraft. Both control techniques offer unique advantages that make them promising for controlling a highly flexible aircraft. The control system works towards executing time-dependent manoeuvres along with performing gust/manoeuvre load alleviation. The developed framework is investigated for demonstration in two design cases: one in which the control system simply worked towards achieving or maintaining a target altitude, and another where the control system is also performing load alleviation. The use of the active load alleviation system results in a significant improvement in the aircraft performance relative to the optimum result without load alleviation. The results show that the inclusion of control system discipline along with other disciplines at early stages of aircraft design improves aircraft performance. It is also shown that structural stresses due to gust excitations can be better controlled by the use of active structural control systems which can improve the fatigue life of the structure.
88

Automatic Implementation of Multidisciplinary Design Optimization Architectures Using piMDO

Marriage, Christopher 24 February 2009 (has links)
Automatic Implementation of Multidisciplinary Design Optimization Architectures Using piMDO Christopher Marriage Masters of Applied Science Graduate Department of Aerospace Engineering University of Toronto 2008 Multidisciplinary Design Optimization (MDO) provides optimal solutions to complex, coupled, multidisciplinary problems. MDO seeks to manage the interactions between disciplinary simulations to produce an optimum, and feasible, design with a minimum of computational effort. Many MDO architectures and approaches have been developed, but usually in isolated situations with little chance for comparison. piMDO was developed to provide a unified framework for the solution of coupled op- timization problems and refinement of MDO approaches. The initial implementation of piMDO showed the benefits of a modular, object oriented, approach and laid the groundwork for future development of MDO architectures. This research furthered the development of piMDO by expanding the suite of available problems, incorporat- ing additional MDO architectures, and extending the object oriented approach to all of the required components for MDO. The end result is a modular, flexible software framework which is user friendly and intuitive to the practitioner. It allows complex problems to be quickly implemented and optimized with a variety of powerful numerical tools and MDO architectures. Importantly, it allows any of its components to be reorganized and sets the stage for future researchers to continue the development of MDO methods.
89

A multi-disciplinary approach for ontological modeling of enterprise business processes : case-based approach /

Kim, Sangwook, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 209-213). Also available on the Internet.
90

A multi-disciplinary approach for ontological modeling of enterprise business processes case-based approach /

Kim, Sangwook, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 209-213). Also available on the Internet.

Page generated in 0.0545 seconds