• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Role of Multidrug Efflux Pumps in the Stress Response of Pseudomonas aeruginosa to Organic Contamination

Fraga Muller, Jocelyn Lisa 13 September 2006 (has links)
Natural microbial communities are the ultimate drivers of change in any ecosystem. Through chemical contamination of natural environments, these communities are exposed to many different types of chemical stressors; however, research on whole genome responses to this contaminant stress is limited. This research examined the stress response of a common soil bacterium, <i>Pseudomonas aeruginosa</i>, to a common environmental pollutant, pentachlorophenol (PCP). In the first part of the research, it was revealed that nutrient-limited <i>P. aeruginosa</i> is able to respond to PCP with minimal physiological damage due to the upregulation of multidrug efflux pumps. Further study of this PCP-mediated induction of efflux pumps revealed a simultaneous increase in antibiotic resistance. It was discovered that the resistance nodulation-cell division (RND) efflux pump, MexAB-OprM, in particular is responsible for the PCP-induced increase in antibiotic resistance. Both whole cell physiological indicators and whole genome analysis were used to examine the stress response of <i>P. aeruginosa</i> to PCP. Cells were grown in a chemostat at a low growth rate to simulate nutrient-limiting growth in the natural environment. Whole cell acetate uptake rates (WAUR) and viable cell counts as colony forming units (CFU) were determined as cells were exposed to increasing concentration of PCP. At the same time, changes in gene expression were examined by Affymetrix microarray technology. Results showed little change in whole-cell physiology, with no difference in WAUR and only a slight reduction in CFU. However, the microarrays revealed that over 100 genes either increased or decreased expression greater than two-fold due to the PCP exposure. In particular, multiple multidrug efflux genes were upregulated in response to the PCP. The results were validated by real time reverse transcription polymerase chain reaction (RT-PCR) for one of these genes. Further analysis of the effects of MexAB-OprM showed that this particular efflux pump is essential for the response of <i>P. aeruginosa</i> to the toxin PCP. Induction of multidrug efflux pumps is responsible for the development of antibiotic resistance in strains of <i>P. aeruginosa</i>. Therefore, it was investigated whether PCP might induce resistance to a variety of antibiotics. The research was further extended to examine the effect of a variety of organic contaminants on MexAB-OprM efflux and antibiotic resistance development. PCP, 2,4-dinitrophenol, benzoate and Roundup® all induced antibiotic resistance. However, although MexAB-OprM is required for optimal growth in the presence of all chemicals, this particular efflux pump is only involved in increased resistance with PCP. This was confirmed using RT-PCR as <i>mexB</i> expression was induced by PCP, but not by the other three chemicals. A long term generational study on the effects of PCP did not result in a stable antibiotic-resistant phenotype; however, RT-PCR showed that <i>mexB</i> induction is a direct result of PCP exposure and can be reversed by removal of PCP. Together, these results demonstrate the necessity to understand functional responses to contaminant stress. Discovery of direct induction of multidrug efflux pumps and the resulting increase in antibiotic resistance has significant implications for environmental microbiology and public health. This research suggests that organic contamination may result in antibiotic resistance and that antibiotic resistant strains may have a survival advantage in contaminated environments. / Ph. D.
12

Studies Based on Statistical Mechanics for Mechanism of Multidrug Efflux of AcrA/AcrB/TolC / AcrA/AcrB/TolCの多剤排出機構に関する統計力学的研究

Mishima, Hirokazu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第19092号 / エネ博第316号 / 新制||エネ||64(附属図書館) / 32043 / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 木下 正弘, 教授 森井 孝, 教授 片平 正人 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
13

Characterization and Inhibition of the Dimer Interface in Bacterial Small Multidrug Resistance Proteins

Poulsen, Bradley E. 19 December 2012 (has links)
As one of the mechanisms of antibiotic resistance, bacteria use several families of membrane-embedded α-helical transporters to remove cytotoxic molecules from the cell. The small multidrug resistance protein family (SMR) is one such group of drug transporters that because of their relative small size [ca. 110 residues with four transmembrane (TM) helices] must form at the minimum dimers to efflux drugs. We have used the SMR homologue Hsmr from Halobacterium salinarum to investigate the oligomerization properties of the protein family at TM helix 4. We produced point mutations along the length of the TM4 helix in the full length Hsmr protein and assayed their dimerization and functional properties via SDS-PAGE and bacterial cell growth assays. We found that Hsmr forms functionally dependent dimers via an evolutionarily conserved 90GLxLIxxGV98 small residue heptad repeat. Upon investigation of the large hydrophobic residues in this motif by substituting each large residue to Ile, Leu, Met, Phe, and Val, we determined that Hsmr efflux function relies on an optimal level of dimerization. While some substitutions led to either decreased or increased dimer and substrate-binding strength, several Ile94 and Val98 mutants were equal to wild type dimerization levels but were nonfunctional, leading to the hypothesis of a mechanistic role at TM4 in addition to the locus of dimerization. The functionally sensitive TM4 dimer represents a potential target for SMR inhibition using a synthetic TM4 peptide mimetic. Using exponential decay measurements from a real-time cellular efflux assay, we observed the efflux decay constant was decreased by up to ~60% after treatment with the TM4 peptide inhibitor compared to control peptide treatments. Our results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins, and represent a valuable route to the discovery of new therapeutics.
14

Characterization and Inhibition of the Dimer Interface in Bacterial Small Multidrug Resistance Proteins

Poulsen, Bradley E. 19 December 2012 (has links)
As one of the mechanisms of antibiotic resistance, bacteria use several families of membrane-embedded α-helical transporters to remove cytotoxic molecules from the cell. The small multidrug resistance protein family (SMR) is one such group of drug transporters that because of their relative small size [ca. 110 residues with four transmembrane (TM) helices] must form at the minimum dimers to efflux drugs. We have used the SMR homologue Hsmr from Halobacterium salinarum to investigate the oligomerization properties of the protein family at TM helix 4. We produced point mutations along the length of the TM4 helix in the full length Hsmr protein and assayed their dimerization and functional properties via SDS-PAGE and bacterial cell growth assays. We found that Hsmr forms functionally dependent dimers via an evolutionarily conserved 90GLxLIxxGV98 small residue heptad repeat. Upon investigation of the large hydrophobic residues in this motif by substituting each large residue to Ile, Leu, Met, Phe, and Val, we determined that Hsmr efflux function relies on an optimal level of dimerization. While some substitutions led to either decreased or increased dimer and substrate-binding strength, several Ile94 and Val98 mutants were equal to wild type dimerization levels but were nonfunctional, leading to the hypothesis of a mechanistic role at TM4 in addition to the locus of dimerization. The functionally sensitive TM4 dimer represents a potential target for SMR inhibition using a synthetic TM4 peptide mimetic. Using exponential decay measurements from a real-time cellular efflux assay, we observed the efflux decay constant was decreased by up to ~60% after treatment with the TM4 peptide inhibitor compared to control peptide treatments. Our results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins, and represent a valuable route to the discovery of new therapeutics.
15

Etude de l'assemblage du système d'efflux membranaire MexAB-OprM impliqué dans la résistance aux antibiotiques chez Pseudomonas aeruginosa : caractérisation combinée par Microbalance à cristal de quartz avec mesure de dissipation et cryo-tomographie électronique

Trépout, Sylvain 08 December 2008 (has links)
Pseudomonas aeruginosa est une bactérie Gram-négative qui présente une grande résistance aux antibiotiques, lui permettant de sévir dans le milieu hospitalier en infectant plus particulièrement les patients immunodéprimés. Cette résistance est principalement due au système d’efflux membranaire MexAB-OprM, capable d’exporter les antibiotiques en dehors de la cellule. Cette pompe à efflux est composée de trois protéines, MexA, MexB et OprM, incorporées dans les membranes internes et externes de la paroi bactérienne. Les structures de MexA, OprM et AcrB -une protéine présente chez E. coli, homologue de MexB- ont été déterminées individuellement par cristallographie des rayons X. Cependant, la structure du complexe entier, regroupant les trois protéines en interaction, ainsi que le mécanisme de cette pompe font toujours défaut. Le renforcement de nos connaissances structurales et fonctionnelles est donc capital pour lutter plus efficacement contre ces bactéries, par de nouvelles stratégies médicamenteuses. Ce travail porte sur l’étude de la structure et de la stœchiométrie de l’assemblage des protéines OprM et MexA au sein d’une membrane lipidique. La caractérisation du complexe OprM/MexA a été réalisée à l’aide de nouvelles techniques de caractérisation physico-chimique des surfaces, telle que la Microbalance à Cristal de Quartz avec Mesure de Dissipation (QCM-D), et par des méthodes d’imagerie, telles que la Cryo-Microscopie Electronique en Transmission (CryoMET) et la Cryo-Tomographie Electronique (CryoTE). En QCM-D, les mesures d’interaction entre OprM et MexA ont été réalisées sur support solide en contrôlant l’orientation d’OprM placée dans un environnement lipidique. Après ajout de la protéine MexA, la formation de complexes OprM/MexA a été mise évidence. Pour comprendre l’organisation de ce complexe, nous avons procédé à une étude comparative de l’organisation des protéines OprM, MexA et du complexe OprM/MexA incorporés dans une membrane lipidique, par CryoMET. Trois types d’organisation, respectivement spécifiques d’OprM, de MexA et du complexe OprM/MexA, ont été mis en évidence. Une analyse structurale de ces trois différents assemblages, pris en sandwich entre deux membranes lipidiques, a été menée par CryoTE. La reconstitution de la protéine OprM conduit à la formation de protéoliposomes, dû à des interactions intervenant entre les protéines OprM au niveau de leurs hélices périplasmiques. La protéine MexA s’organise sous forme d’une structure annulaire de 13 nm de hauteur au sein des membranes lipidiques, et d’une structure plus complexe de 26 nm de hauteur, résultant de l’empilement tête-bêche de deux structures annulaires de 13 nm. Ce travail révèle les dimensions exactes de l’assemblage formé par MexA, et permet de localiser à proximité des membranes les domaines non résolus dans la structure cristallographique. La reconstitution du complexe OprM/MexA révèle une disposition régulière des deux protéines dans les membranes lipidiques. Au sein des complexes, les protéines OprM sont présentes sous forme de trimères. Dans la membrane opposée, à l’aplomb d’une molécule d’OprM, MexA ne forme pas une structure annulaire similaire à celle décrite précédemment, indiquant un état d’oligomérisation différent de celui observé dans les assemblages MexA. Les densités de MexA sont compatibles avec la présence de quelques molécules de MexA. Cependant des structures annulaires de MexA, positionnées à l’aplomb de trois trimères d’OprM sont visibles. Notre étude montre que MexA adopte des structures oligomériques spécifiques en fonction de ses interactions avec les membranes lipidiques ou avec son partenaire OprM. / The structure determination of membrane protein in lipid environment can be carried out using cryo electron microscopy combined with the recent development of data collection and image processing. We describe a protocol to study assemblies or stacks of membrane protein reconstitued into a lipid membrane using both cryo electron tomography and single particle analysis which is an alternative approach to electron crystallography for solving 3D structure. We show the organization of the successive layers of OprM molecules revealing the protein-protein interactions between OprM molecules of two successive lipid bilayers.
16

On the structure and function of multidrug efflux pumps

Neuberger, Arthur January 2019 (has links)
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this work, a summary is provided of our current understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria (Chapter 1). The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities. Although this thesis primarily explores structure and function, it also elucidates the hidden regulatory mechanism (post-translational) behind the association of a small protein called AcrZ with the tripartite complex AcrAB/TolC, in connection with the lipid environment, and the resulting changes in the latter's functionality (Chapter 2). A regulatory role of the native membrane lipid environment as well as of small proteins for efflux pump activity have previously been hypothesised. I present the first example of a function-regulating role of the lipid cardiolipin in combination with a small protein binding partner (AcrZ) for the substrate selectivity and transport activity of an efflux pump protein (AcrB). This regulation happens through induced structural changes which have remained unseen so far. Alongside with these results, a nanodisc reconstitution method was experimentally adapted for a structure-function investigation of an efflux pump (complex) using cryo-EM (Chapter 2). Beyond some fundamental regulatory insights, hidden intrinsic transport mechanisms for some transporters have also remained to be explored and studied. The discovery of a mechanism for active influx by a prominent efflux pump model system (Chapter 3) provides hope that this phenomenon is more common amongst multidrug transporters and that it could be utilised for drug discovery purposes. This novel feature explains the contradictory findings on this transporter in the past and raises new questions about the little-known physiological role and evolution of efflux pumps. The development and evolution of antimicrobial resistance has frequently shown to be a multifactorial and fast-moving process. One of these factors is the evolution of pumps itself towards an altered functionality (e.g. towards a broader or altered substrate spectrum or higher efflux rates). Against this background, the role of key carboxylate residues for efflux-energising proton trafficking was investigated for a prominent study model of a secondary-active transporter (Chapter 4). The re-allocation and/or addition of acidic residues was demonstrated to result in the preservation of wild type activity or the generation of hyper-efflux activity, respectively. These findings suggest that rapid emergence of antimicrobial resistance could be enhanced by the 'plasticity' in the location of key carboxylate residues with a role in proton coupling. It also demonstrates the necessity of antimicrobial drug design programmes to anticipate possible trajectories of an adaptive evolution of efflux pump. The 'cryo-EM revolution' has boosted the pace at which new structural and functional insights into multidrug efflux pumps are gained. Nevertheless, in order to derive the structure of individual pump components or of a full assembly, it is sometimes necessary to identify and characterise homologues and mutants, which would allow the application of cryo-EM for obtaining near-atomic maps. Functional analyses presented in this work helped to characterise a homologue and mutants of the MacAB/TolC tripartite complex to justify the obtained protein structures and strategies for further functional characterisation (Chapter 5). Given (1) the unusual stoichiometry of a MacB dimer in complex with a hexameric membrane-fusion protein (MacA), which leads to a seeming leakiness of the assembly, and (2) the fact that substrate has to pass through a narrow aperture in the membrane-fusion protein for extrusion, it is rather surprising that MacB was previously shown to transport an entire toxin. An experimental approach was developed that could enable the structure determination of a toxin-bound full assembly of MacAB/TolC (Chapter 5). Finally, the role of multidrug efflux pumps for the evolution of multidrug resistance is yet to be studied and better explored. For instance, evolutionary trajectories of pump overexpression, as compared to those of regular expression or no expression, are unknown yet could have the potential to reveal useful insights for spread prevention and drug design. The outline of an experimental design with some preliminary validating data is presented in Chapter 6.

Page generated in 0.057 seconds