Spelling suggestions: "subject:"multifactor popula codels"" "subject:"multifactor popula 2models""
1 |
Monte Carlo Methods for Multifactor Portfolio Credit RiskLee, Yi-hsi 08 February 2010 (has links)
This study develops a dynamic importance sampling method (DIS) for numerical simulations of rare events. The DIS method is flexible, fast, and accurate. The most importance is that it is very easy to implement. It could be applied to any multifactor copula models, which conduct by arbitrary independent random variables. First, the key common factor (KCF) is determined by the maximum value among the coefficients of factor loadings. Second, searching the indicator by the order statistics and applying the truncated sampling techniques, the probability of large losses (PLL) and the expected excess loss above threshold (EELAT) can be estimated precisely. Except for the assumption that the factor loadings of KCF do not exit zero elements, we do not impose any restrictions on the composition of the portfolio. The DIS method developed in this study can therefore be applied to a very wide range of credit risk models. Comparison of the numerical experiment between the method of Glasserman, Kang and Shahabuddin (2008) and the DIS method developed in this study, under the multifactor Gaussian copula model and the high market impact condition (the factor loadings of marketwide factor of 0.8), both variance reduction ratio and efficient ratio of the DIS model are much better than that of Glasserman et al. (2008)¡¦s. And both results approximate when the factor loadings of marketwide factor decreases to the range of 0.5 to 0.25. However, the DIS method is superior to the method of Glasserman et al. (2008) in terms of the practicability. Numerical simulation results demonstrate that the DIS method is not only feasible to the general market conditions, but also particularly to the high market impact condition, especially in credit contagion or market collapse environments. It is also noted that the numerical results indicate that the DIS estimators exit bounded relative error.
|
Page generated in 0.078 seconds