Spelling suggestions: "subject:"multimodal functions"" "subject:"multimodala functions""
1 |
A species conserving genetic algorithm for multimodal function optimization.Li, Jian-Ping, Balazs, M.E., Parks, G.T., Clarkson, P.J. January 2002 (has links)
No / This paper introduces a new technique called species conservation for evolving paral-lel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current gen-eration are saved (conserved) by moving them into the next generation. Our technique has proved to be very effective in finding multiple solutions of multimodal optimiza-tion problems. We demonstrate this by applying it to a set of test problems, including some problems known to be deceptive to genetic algorithms.
|
2 |
Evaluating cascade correlation neural networks for surrogate modelling needs and enhancing the Nimrod/O toolkit for multi-objective optimisationRiley, Mike J. W. January 2011 (has links)
Engineering design often requires the optimisation of multiple objectives, and becomes significantly more difficult and time consuming when the response surfaces are multimodal, rather than unimodal. A surrogate model, also known as a metamodel, can be used to replace expensive computer simulations, accelerating single and multi-objective optimisation and the exploration of new design concepts. The main research focus of this work is to investigate the use of a neural network surrogate model to improve optimisation of multimodal surfaces. Several significant contributions derive from evaluating the Cascade Correlation neural network as the basis of a surrogate model. The contributions to the neural network community ultimately outnumber those to the optimisation community. The effects of training this surrogate on multimodal test functions are explored. The Cascade Correlation neural network is shown to map poorly such response surfaces. A hypothesis for this weakness is formulated and tested. A new subdivision technique is created that addresses this problem; however, this new technique requires excessively large datasets upon which to train. The primary conclusion of this work is that Cascade Correlation neural networks form an unreliable basis for a surrogate model, despite successes reported in the literature. A further contribution of this work is the enhancement of an open source optimisation toolkit, achieved by the first integration of a truly multi-objective optimisation algorithm.
|
3 |
Evaluating cascade correlation neural networks for surrogate modelling needs and enhancing the Nimrod/O toolkit for multi-objective optimisationRiley, Mike J. W. 03 1900 (has links)
Engineering design often requires the optimisation of multiple objectives, and becomes significantly more difficult and time consuming when the response surfaces are multimodal, rather than unimodal. A surrogate model, also known as a metamodel, can be used to replace expensive computer simulations, accelerating single and multi-objective optimisation and the exploration of new design concepts. The main research focus of this work is to investigate the use of a neural network surrogate model to improve optimisation of multimodal surfaces.
Several significant contributions derive from evaluating the Cascade Correlation neural network as the basis of a surrogate model. The contributions to the neural network community ultimately outnumber those to the optimisation community.
The effects of training this surrogate on multimodal test functions are explored. The Cascade Correlation neural network is shown to map poorly such response surfaces. A hypothesis for this weakness is formulated and tested. A new subdivision technique is created that addresses this problem; however, this new technique requires excessively large datasets upon which to train.
The primary conclusion of this work is that Cascade Correlation neural networks form an unreliable basis for a surrogate model, despite successes reported in the literature.
A further contribution of this work is the enhancement of an open source optimisation toolkit, achieved by the first integration of a truly multi-objective optimisation algorithm.
|
4 |
Conception d'algorithmes hybrides pour l'optimisation de l'énergie mémoire dans les systèmes embarqués et de fonctions multimodales / Design of hybrid algorithms for memory energy optimization in embedded systems and multimodal functionsIdrissi Aouad, Maha 04 July 2011 (has links)
La mémoire est considérée comme étant gloutonne en consommation d'énergie, un problème sensible, particulièrement dans les systèmes embarqués. L'optimisation globale de fonctions multimodales est également un problème délicat à résoudre du fait de la grande quantité d'optima locaux de ces fonctions. Dans ce mémoire, je présente différents nouveaux algorithmes hybrides et distribués afin de résoudre ces deux problèmes d'optimisation. Ces algorithmes sont comparés avec les méthodes classiques utilisées dans la littérature et les résultats obtenus sont encourageants. En effet, ces résultats montrent une réduction de la consommation d'énergie en mémoire d'environ 76% jusqu'à plus de 98% sur nos programmes tests, d'une part. D'autre part, dans le cas de l'optimisation globale de fonctions multimodales, nos algorithmes hybrides convergent plus souvent vers la solution optimale globale. Des versions distribuées et coopératives de ces nouveaux algorithmes hybrides sont également proposées. Elles sont, par ailleurs, plus rapides que leurs versions séquentielles respectives. / Résumé en anglais : Memory is considered to be greedy in energy consumption, a sensitive issue, especially in embedded systems. The global optimization of multimodal functions is also a difficult problem because of the large number of local optima of these functions. In this thesis report, I present various new hybrid and distributed algorithms to solve these two optimization problems. These algorithms are compared with conventional methods used in the literature and the results obtained are encouraging. Indeed, these results show a reduction in memory energy consumption by about 76% to more than 98% on our benchmarks on one hand. On the other hand, in the case of global optimization of multimodal functions, our hybrid algorithms converge more often to the global optimum solution. Distributed and cooperative versions of these new hybrid algorithms are also proposed. They are more faster than their respective sequential versions.
|
Page generated in 0.1079 seconds