• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applying multimode interference couplers in ring resonators

Tsai, Yi-Lin 02 August 2009 (has links)
This study uses vertical mirror optical waveguide reflector and bending waveguide to fabricate semiconductor ring resonators. By using multimode interference couplers with specific width and length that generate distinctive energy distribution to achieve the power splitting of 85:15. We integrate vertically deep etching turning mirror to reflect optical mode, and reduce the component size to 37.6%. In fabrication process, this study applies multiple wet etching technique to form the waveguide structure. First, we use wet etching technique to etch ridge waveguide and turning mirror, and then perform deep etching in the periphery of bending and turning region to reduce the bending loss. Finally, the etching mask is lifted off, and the wafer is polished and sliced for measurement. After measuring the signal, we can compute waveguide loss by Fabry-perot resonant situation. The waveguide loss is 59.6dB/cm. Power splitting of 90:10 is achieved. The free spectral range (FSR) is 72GHz for the ring resonators.
2

Performance Characterization of Silicon-On-Insulator (SOI) Corner Turning and Multimode Interference Devices

Zheng, Qi 05 September 2012 (has links)
Silicon-on-insulator (SOI) technology has become increasingly attractive because of the strong light confinement, which significantly reduces the footprint of the photonic components, and the possibility of monolithically integrating advanced photonic waveguide circuits with complex electronic circuits, which may reduce the cost of photonic integrated circuits by mass production. This thesis is dedicated to numerical simulation and experimental performance measurement of passive SOI waveguide devices. The thesis consists of two main parts. In the first part, SOI curved waveguide and corner turning mirror are studied. Propagation losses of the SOI waveguide devices are accurately measured using a Fabry-Perot interference method. Our measurements verify that the SOI corner turning mirror structures can not only significantly reduce the footprint size, but also reduce the access loss by replacing the curved sections in any SOI planar lightwave circuit systems. In the second part, an optical 90o hybrid based on 4 × 4 multimode interference (MMI) coupler is studied. Its quadrature phase behavior is verified by both numerical simulations and experimental measurements.
3

Performance Characterization of Silicon-On-Insulator (SOI) Corner Turning and Multimode Interference Devices

Zheng, Qi 05 September 2012 (has links)
Silicon-on-insulator (SOI) technology has become increasingly attractive because of the strong light confinement, which significantly reduces the footprint of the photonic components, and the possibility of monolithically integrating advanced photonic waveguide circuits with complex electronic circuits, which may reduce the cost of photonic integrated circuits by mass production. This thesis is dedicated to numerical simulation and experimental performance measurement of passive SOI waveguide devices. The thesis consists of two main parts. In the first part, SOI curved waveguide and corner turning mirror are studied. Propagation losses of the SOI waveguide devices are accurately measured using a Fabry-Perot interference method. Our measurements verify that the SOI corner turning mirror structures can not only significantly reduce the footprint size, but also reduce the access loss by replacing the curved sections in any SOI planar lightwave circuit systems. In the second part, an optical 90o hybrid based on 4 × 4 multimode interference (MMI) coupler is studied. Its quadrature phase behavior is verified by both numerical simulations and experimental measurements.
4

Performance Characterization of Silicon-On-Insulator (SOI) Corner Turning and Multimode Interference Devices

Zheng, Qi January 2012 (has links)
Silicon-on-insulator (SOI) technology has become increasingly attractive because of the strong light confinement, which significantly reduces the footprint of the photonic components, and the possibility of monolithically integrating advanced photonic waveguide circuits with complex electronic circuits, which may reduce the cost of photonic integrated circuits by mass production. This thesis is dedicated to numerical simulation and experimental performance measurement of passive SOI waveguide devices. The thesis consists of two main parts. In the first part, SOI curved waveguide and corner turning mirror are studied. Propagation losses of the SOI waveguide devices are accurately measured using a Fabry-Perot interference method. Our measurements verify that the SOI corner turning mirror structures can not only significantly reduce the footprint size, but also reduce the access loss by replacing the curved sections in any SOI planar lightwave circuit systems. In the second part, an optical 90o hybrid based on 4 × 4 multimode interference (MMI) coupler is studied. Its quadrature phase behavior is verified by both numerical simulations and experimental measurements.
5

N-type Modulation-Doped InGaAlAs/InP Strain-Balanced Multiple Quantum Wells for Photonic Integrated Circuits

Feng, Jui-yang 04 August 2008 (has links)
In this work, we have reported the design, MBE-growth and fabrication of strain-balanced n-type modulation-doped (MD) InGaAlAs/InGaAs multiple quantum wells laser/SOAs on InP. The quantum well contains a lattice-matched InGaAs core, a compressive-strained InGaAs padding, and a tensile-strained InGaAlAs spacer. Two kinds of samples having similar structure but different fundamental transition wavelength of 1.55 £gm and 1.48 £gm are separately prepared for investigating their characteristics in optical amplification under forward bias and electro-absorption under reversed bias. Also, the technique of growing high-quality InGaAlAs with solid-source molecular beam epitaxy has been established and the resulting InGaAlAs bulk and QWs samples are extensively characterized by double-crystal X-ray diffraction, transmission electron microscopy, electroluminescence, and photoluminescence measurements. For £f = 1.55 £gm samples, ridge-waveguide lasers of Fabry-Perot (FP) type and tilted-end-facet (TEF) type were fabricated by a new developed multi-step wet-etching process. When injection current density > 20A/cm^2, electroluminescence spectra show higher optical gain for the quantum well e1-hh2 transition at £f = 1460 nm than the e1-hh1 transition at £f = 1550 nm. The FP laser shows a lasing peak of £f = 1514 nm at threshold. Additional lasing wavelength at £f =1528 nm and 1545 nm were observed sequentially as the injection current increased. However, for the TEF laser, only the emission at £f = 1511 nm was observed. These TE-polarized lasing wavelengths are consistent with the £_-like absorption peaks in photocurrent spectra. The lasing performance is possible attributed to optical transitions within quantum dots/wires which are formed by the strain-field profile and alloy segregation/migration. For £f = 1.48 £gm samples, the differential absorption spectroscopy, which measures the change of transmission (£GT/T) in the presence of electric field, is used to study the electro-absorption modulation behavior of MD-SOA¡¦s. A sample with n-type modulation-doping amounting to a sheet density of 3.5 ¡Ñ 10^11 cm^-2 per QW and combining with a hole-stopping barrier represents the largest chirp parameter (£Gn/£Gk) under reversed bias, which offers an excellent platform to realize electro-refractive devices with larger refractive index changes (£Gn) but lower differential absorption (£G£\) near £f = 1.55 £gm, which is also our interested region of operation. In addition, we have succeeded in reducing the length of conventional constant-width multimode interference (MMI) coupler of K = 0.15 and 0.28 more than 32% by a novel stepped-width design concept. By extending the stepped-with idea, we show that it is possible to obtain 2x2 waveguide couplers with new power splitting ratios of 7%, 64%, 80% and 93% for cross coupling by cascading two short MMI sections. We further realize freely chosen power splitting ratio by interconnecting a pair of unequal-width waveguides as the phase-tuning section into the middle of two short MMI sections. These compact and low loss MMI-based devices use only rectangular geometry without any bent, curved, and tapered waveguides. They offer valuable new possibilities for designing waveguide-based photonic integrated circuits.

Page generated in 0.1283 seconds