• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensor based localization for multiple mobile robots using virtual links

Rynn, Andrew John 15 November 2004 (has links)
Mobile robots are used for a wide range of purposes such as mapping an environment and transporting material goods. Regardless of the specific application, the navigation of the mobile robot is usually divided into three separate parts: localization, path planning and path execution. Localization is the process of determining the location of the robot with respect to a reference coordinate system. There are many different approaches to localizing a mobile robot which employ a wide variety of sensors. The objective of my research is to develop a method for the localization of multiple mobile robots equipped with inexpensive range sensors in an indoor environment. Each mobile robot will be equipped with a rotating infrared sensor and a rotating CMOS camera. The multiple mobile robot system will be treated as a linked robot for localization. The proposed localization method is verified via both simulation and experiment. Through the use of the virtual link length and relative heading information, a system of mobile robots can be effectively localized using detected environmental features.
2

Persistent Monitoring with Energy-Limited Unmanned Aerial Vehicles Assisted by Mobile Recharging Stations

Yu, Kevin L. January 2018 (has links)
We study the problem of planning a tour for an energy-limited Unmanned Aerial Vehicle (UAV) to visit a set of sites in the least amount of time. We envision scenarios where the UAV can be recharged along the way either by landing on stationary recharging stations or on Unmanned Ground Vehicles (UGVs) acting as mobile recharging stations. This leads to a new variant of the Traveling Salesperson Problem (TSP) with mobile recharging stations. We present an algorithm that finds not only the order in which to visit the sites but also when and where to land on the charging stations to recharge. Our algorithm plans tours for the UGVs as well as determines the best locations to place stationary charging stations. While the problems we study are NP-Hard, we present a practical solution using Generalized TSP that finds the optimal solution. If the UGVs are slower, the algorithm also finds the minimum number of UGVs required to support the UAV mission such that the UAV is not required to wait for the UGV. We present a calibration routine to identify parameters that are needed for our algorithm as well as simulation results that show the running time is acceptable for reasonably sized instances in practice. We evaluate the performance of our algorithm through simulations and proof-of-concept experiments with a fully autonomous system of one UAV and UGV. / Master of Science / Commercially available Unmanned Aerial Vehicles (UAVs), especially multi-rotor aircrafts, have a flight time of less than 30 minutes. However many UAV applications, such as surveillance, package delivery, and infrastructure monitoring, require much longer flight times. To address this problem, we present a system in which an Unmanned Ground Vehicle (UGV) can recharge the UAV during deployments. This thesis studies the problem of finding when, where, and how much to recharge the battery. We also allow for the UGV to recharge while moving from one site to another. We present an algorithm that finds the paths for the UAV and UGV to visit a set of points of interest in the least time possible. We also present algorithms for cases when the UGV is slower than the UAV, and more than one UGV may be required. We evaluate our algorithms through simulations and proof-of-concept experiments.

Page generated in 0.0397 seconds