• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the estimation of time series regression coefficients with long range dependence

Chiou, Hai-Tang 28 June 2011 (has links)
In this paper, we study the parameter estimation of the multiple linear time series regression model with long memory stochastic regressors and innovations. Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002) proposed a class of frequency-domain weighted least squares estimates. Their estimates are shown to achieve the Gauss-Markov bound with standard convergence rate. In this study, we proposed a time-domain generalized LSE approach, in which the inverse autocovariance matrix of the innovations is estimated via autoregressive coefficients. Simulation studies are performed to compare the proposed estimates with Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002). The results show the time-domain generalized LSE is comparable to Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002) and attains higher efficiencies when the autoregressive or moving average coefficients of the FARIMA models have larger values. A variance reduction estimator, called TF estimator, based on linear combination of the proposed estimator and Hidalgo and Robinson (2002)'s estimator is further proposed to improve the efficiency. Bootstrap method is applied to estimate the weights of the linear combination. Simulation results show the TF estimator outperforms the frequency-domain as well as the time-domain approaches.

Page generated in 0.1145 seconds