• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of multiple mobile sinks in wireless sensor networks for large scale areas

Al-Behadili, H., AlWane, S., Al-Yasir, Yasir I.A., Ojaroudi Parchin, Naser, Olley, Peter, Abd-Alhameed, Raed 01 May 2020 (has links)
Yes / Sensing coverage and network connectivity are two of the most fundamental issues to ensure that there are effective environmental sensing and robust data communication in a WSN application. Random positioning of nodes in a WSN may result in random connectivity, which can cause a large variety of key parameters within the WSN. For example, data latency and battery lifetime can lead to the isolation of nodes, which causes a disconnection between nodes within the network. These problems can be avoided by using mobile data sinks, which travel between nodes that have connection problems. This research aims to design, test and optimise a data collection system that addresses the isolated node problem, as well as to improve the connectivity between sensor nodes and base station, and to reduce the energy consumption simultaneously. In addition, this system will help to solve several problems such as the imbalance of delay and hotspot problems. The effort in this paper is focussed on the feasibility of using the proposed methodology in different applications. More ongoing experimental work will aim to provide a detailed study for advanced applications e.g. transport systems for civil purposes. / European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424.

Page generated in 0.1065 seconds