Spelling suggestions: "subject:"cultiple model approach"" "subject:"bmultiple model approach""
1 |
Estrutura ANFIS modificada para identifica??o e controle de plantas com ampla faixa de opera??o e n?o linearidade acentuadaFonseca, Carlos Andr? Guerra 21 December 2012 (has links)
Made available in DSpace on 2014-12-17T14:55:11Z (GMT). No. of bitstreams: 1
CarlosAGF_TESE.pdf: 1739972 bytes, checksum: 7401db4e68ede642dc9d65e00bd935e6 (MD5)
Previous issue date: 2012-12-21 / In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification.
A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers.
Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant.
The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method / Neste trabalho prop?e-se uma modifica??o na estrutura neurofuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) para a obten??o de um m?todo sistem?tico para identifica??o e controle de plantas com ampla faixa de opera??o e n?o linearidade acentuada, a partir de t?cnicas lineares de identifica??o e controle. Este m?todo se baseia na metodologia de m?ltiplos modelos. Dessa forma, obt?m-se modelos lineares locais e esses s?o combinados pela estrutura neurofuzzy proposta. Uma m?trica que permite combinar adequadamente esses modelos ? obtida ap?s o treinamento dessa estrutura, resultando na identifica??o global da planta.
Para cada um desses modelos ? projetado um controlador. O controle global ? obtido a partir da combina??o dos sinais dos controladores locais. Essa mistura ? feita pelo ANFIS modificado. A modifica??o na arquitetura do ANFIS permite o compartilhamento do conhecimento adquirido pelo treinamento da estrutura empregada na combina??o de modelos locais. Assim n?o se faz necess?rio o treinamento da estrutura empregada na mistura de controladores.
Avaliaram-se as estruturas modificadas atrav?s de dois estudos de caso. Verificou-se que ? poss?vel treinar apenas um ANFIS, para a obten??o de uma m?trica que permita a combina??o adequada dos modelos lineares, v?lidos localmente, e essa estrutura, j? ajustada, pode ser aplicada na combina??o de controladores lineares, projetados para cada um dos modelos, resultando em um sistema de controle que satisfaz as especifica??es de desempenho previamente estabelecidas.
O m?todo proposto possibilita a utiliza??o de quaisquer t?cnicas de identifica??o e controle para a obten??o dos modelos e controladores locais, e a redu??o da complexidade de utiliza??o do ANFIS para identifica??o e controle. Neste trabalho priorizaram-se as t?cnicas mais simples de identifica??o e controle de sistemas de forma a simplificar a utiliza??o do m?todo
|
2 |
Contribution à l'estimation d'état et au diagnostic des systèmes représentés par des multimodèles / A contribution to state estimation and diagnosis of systems modelled by multiple modelsOrjuela, Rodolfo 06 November 2008 (has links)
Nombreux sont les problèmes classiquement rencontrés dans les sciences de l'ingénieur dont la résolution fait appel à l'estimation d'état d'un système par le biais d'un observateur. La synthèse d'un observateur n'est envisageable qu'à la condition de disposer d'un modèle à la fois exploitable et représentatif du comportement dynamique du système. Or, la modélisation du système et la synthèse de l'observateur deviennent des tâches difficiles à accomplir dès lors que le comportement dynamique du système doit être représenté par un modèle de nature non linéaire. Face à ces difficultés, l'approche multimodèle peut être mise à profit. Les travaux présentés dans cette thèse portent sur les problèmes soulevés par l'identification, l'estimation d'état et le diagnostic de systèmes non linéaires représentés à l'aide d'un multimodèle découplé. Ce dernier, composé de sous-modèles qui peuvent être de dimensions différentes, est doté d'un haut degré de généralité et de flexibilité et s'adapte particulièrement bien à la modélisation des systèmes complexes à structure variable. Cette caractéristique le démarque des approches multimodèles plus conventionnelles qui ont recours à des sous-modèles de même dimension. Après une brève introduction à l'approche multimodèle, le problème de l'estimation paramétrique du multimodèle découplé est abordé. Puis sont présentés des algorithmes de synthèse d'observateurs d'état robustes vis-à-vis des perturbations, des incertitudes paramétriques et des entrées inconnues affectant le système. Ces algorithmes sont élaborés à partir de trois types d'observateurs dits à gain proportionnel, à gain proportionnel-intégral et à gain multi-intégral. Enfin, les différentes phases d'identification, de synthèse d'observateurs et de génération d'indicateurs de défauts sont illustrées au moyen d'un exemple académique de diagnostic du fonctionnement d'un bioréacteur / The state estimation of a system, with the help of an observer, is largely used in many practical situations in order to cope with many classic problems arising in control engineering. The observer design needs an exploitable model able to give an accurate description of the dynamic behaviour of the system. However, system modelling and observer design can not easily be accomplished when the dynamic behaviour of the system must be described by non linear models. The multiple model approach can be used to tackle these difficulties. This thesis deals with black box modelling, state estimation and fault diagnosis of nonlinear systems represented by a decoupled multiple model. This kind of multiple model provides a high degree of generality and flexibility in the modelling stage. Indeed, the decoupled multiple model is composed of submodels which dimensions can be different. Thus, this feature is a significant difference between the decoupled multiple model and the classical used multiple model where all the submodels have the same dimension. After a brief introduction to the multiple model approach, the parametric identification problem of a decoupled multiple model is explored. Algorithms for robust observers synthesis with respect to perturbations, modelling uncertainties and unknown inputs are afterwards presented. These algorithms are based on three kinds of observers called proportional, proportional-integral and multiple-integral. Lastly, identification, observers synthesis and fault sensitivity signals generation are illustrated via a simulation example of a bioreactor
|
Page generated in 0.0894 seconds