• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Therapeutic potentials of oligodendrocyte precursors in the animal model of multiple sclerosis

Guo, Anchen., 郭安臣. January 2011 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
2

Neocortical lesions in an animal model of multiple sclerosis

Pomeroy, Ian January 2006 (has links)
No description available.
3

Antecedent events underlying axon damage in an animal model of multiple sclerosis

Brinkoetter, Mary T. January 2009 (has links)
Multiple sclerosis is a progressive autoimmune disease where myelin is gradually stripped from axons. Axon degeneration inevitably follows protracted myelin loss ultimately leading to irreversible neurological decline. To better understand the cellular mechanisms associated with the axon loss phase of the disease, spinal cord axons from the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis were examined using correlated in vivo time-lapse microscopy and serial section transmission electron microscopic (ssTEM) reconstruction. A novel technique, termed near infrared burning (NIRB), was developed that took advantage of a femtosecond-pulsed mode locked laser’s ability to create photoconvertable fiducial markers for routine identification of previously imaged axons for ssTEM reconstruction. This combination of imaging techniques revealed the subcellular milieu that underlies axon degeneration at both the light and electron microscopic level. In particular, paranodal regions of axons in EAE animals contained a significantly higher population of mitochondria with large rounded, electron lucid, vesiculated mitochondria with unorganized cristae compared to controls. This effect was largely restricted to the paranodal region and was not always associated with direct immune cell interaction or myelin loss. Together, these results suggest a novel mechanism for axon degeneration that is not only focal in nature, but decoupled with myelin loss in the EAE animal model of multiple sclerosis. / Department of Biology

Page generated in 0.0759 seconds