• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The application of signal processing and artificial intelligence techniques in the condition monitoring of rotating machinery / Nicolaas Theodor van der Merwe

Van der Merwe, Nicolaas Theodor January 2003 (has links)
Condition monitoring of critical machinery has many economic benefits. The primary objective is to detect faults, for example on rolling element bearings, at an early stage to take corrective action prior to the catastrophic failure of a component. In this context, it is important to be able to discriminate between stable and deteriorating fault conditions. A number of conventional vibration analysis techniques exist by which certain faults in rotating machinery may be identified. However, under circumstances involving multiple fault conditions conventional condition monitoring techniques may fail, e.g. by indicating deteriorating fault conditions for stable fault situations or vice versa. Condition monitoring of rotating machinery that may have multiple, possibly simultaneous, fault conditions is investigated in this thesis. Different combinations of interacting fault conditions are studied both through experimental methods and simulated models. Novel signal processing techniques (such as cepstral analysis and equidistant Fourier transforms) and pattern recognition techniques (based on the nearest neighbour algorithm) are applied to vibration problems of this nature. A set of signal processing and pattern recognition techniques is developed for the detection of small incipient mechanical faults in the presence of noise and dynamic load (imbalance). In the case investigated the dynamic loading consisted of varying degrees of imbalance. It is demonstrated that the proposed techniques may be applied successfully to the detection of multiple fault conditions. / Thesis (Ph.D. (Electronical Engineering))--North-West University, Potchefstroom Campus, 2004.
2

The application of signal processing and artificial intelligence techniques in the condition monitoring of rotating machinery / Nicolaas Theodor van der Merwe

Van der Merwe, Nicolaas Theodor January 2003 (has links)
Condition monitoring of critical machinery has many economic benefits. The primary objective is to detect faults, for example on rolling element bearings, at an early stage to take corrective action prior to the catastrophic failure of a component. In this context, it is important to be able to discriminate between stable and deteriorating fault conditions. A number of conventional vibration analysis techniques exist by which certain faults in rotating machinery may be identified. However, under circumstances involving multiple fault conditions conventional condition monitoring techniques may fail, e.g. by indicating deteriorating fault conditions for stable fault situations or vice versa. Condition monitoring of rotating machinery that may have multiple, possibly simultaneous, fault conditions is investigated in this thesis. Different combinations of interacting fault conditions are studied both through experimental methods and simulated models. Novel signal processing techniques (such as cepstral analysis and equidistant Fourier transforms) and pattern recognition techniques (based on the nearest neighbour algorithm) are applied to vibration problems of this nature. A set of signal processing and pattern recognition techniques is developed for the detection of small incipient mechanical faults in the presence of noise and dynamic load (imbalance). In the case investigated the dynamic loading consisted of varying degrees of imbalance. It is demonstrated that the proposed techniques may be applied successfully to the detection of multiple fault conditions. / Thesis (Ph.D. (Electronical Engineering))--North-West University, Potchefstroom Campus, 2004.

Page generated in 0.1427 seconds