• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geophysical Imaging of Earth Processes: Electromagnetic Induction in Rough Geologic Media, and Back-Projection Imaging of Earthquake Aftershocks

Beskardes, Gungor Didem 04 June 2017 (has links)
This dissertation focuses on two different types of responses of Earth; that is, seismic and electromagnetic, and aims to better understand Earth processes at a wider range of scales than those conventional approaches offer. Electromagnetic responses resulting from the subsurface diffusion of applied electromagnetic fields through heterogeneous geoelectrical structures are utilized to characterize the underlying geology. Geology exhibits multiscale hierarchical structure which brought about by almost all geological processes operating across multiple length scales and the relationship between multiscale electrical properties of underlying geology and the observed electromagnetic response has not yet been fully understood. To quantify this relationship, the electromagnetic responses of textured and spatially correlated, stochastic geologic media are herein presented. The modelling results demonstrate that the resulting electromagnetic responses present a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed; moreover, they are examples of fractional Brownian motion. Furthermore, the results indicate that the fractal behavior of electromagnetic responses is correlated with the degree of the spatial correlation, the contrasts in ground electrical conductivity, and the preferred orientation of small-scale heterogeneity. In addition, these inferences are also supported by the observed electromagnetic responses from a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity. Seismic signals generated by aftershocks are generally recorded by local aftershock networks consisted of insufficient number of stations which result in strongly spatially-aliased aftershock data. This limits aftershock detections and locations at smaller magnitudes. Following the 23 August 2011 Mineral, Virginia earthquake, to drastically reduce spatial aliasing, a temporary dense array (AIDA) consisting of ~200 stations at 200-400 m spacing was deployed near the epicenter to record the 12 days of the aftershocks. The backprojection imaging method is applied to the entire AIDA dataset to detect and locate aftershocks. The method takes advantage of staking of many seismograms and improves the signal-to-noise ratio for detection. The catalog obtained from the co-deployed, unusually large temporal traditional network of 36 stations enabled a quantitative comparison. The aftershock catalog derived from the dense AIDA array and the backprojection indicates event detection an order of magnitude smaller including events as small as M–1.8. The catalog is complete to magnitude –1.0 while the traditional network catalog was complete to M–0.27 for the same time period. The AIDA backprojection catalog indicate the same major patterns of seismicity in the epicentral region, but additional details are revealed indicating a more complex fault zone and a new shallow cluster. The b-value or the temporal decay constant were not changed by inclusion of the small events; however, they are different for two completeness periods and are different at shallow depth than greater depth. / Ph. D.
2

Quantification de l'hétérogénéité des précipitations et mesure radar bande-X pour améliorer les prévisions des inondations / Quantifying the rain heterogeneity by X-band radar measurements for improving flood forecasting

Da Silva Rocha Paz, Igor 23 January 2018 (has links)
L'objectif de cette thèse était d'apporter une approche géophysique non linéaire à l'hydrologie urbaine. Elle a visé l'étude de la mise à l'échelle et de l'intermittence de la non-linéarité des précipitations, la réalisation d'une méthode de prévision stochastique à très court terme ("nowcast"), ainsi que son application aux processus hydrologiques dans les environnements (semi-) urbains. La partie modélisation hydrologique globale concerne la vallée de la Bièvre, zone semi-urbanisée de 110 km2 dans le sud-ouest de la région parisienne. Par conséquent, trois études différentes ont été réalisées dans cette zone à l'aide de deux modèles hydrologiques : le modèle conceptuel semi-distribué InfoWorks CS appliqué sur tout le bassin versant de Bièvre ; et le modèle physique complètement distribué Multi-Hydro, développé à l'École des Ponts ParisTech, appliqué sur deux sous-bassins versants de la Bièvre. Les principaux objectifs étaient de mieux comprendre les impacts de la variabilité spatio-temporelle des données pluviométriques en utilisant deux produits (les données radar bande-C de Météo-France avec une résolution de 1 km x 1 km x 5 min, et les données radar DPSRI band-X de l'ENPC à une résolution de 250 m x 250 m x 3.41 min) comme entrées pour les modèles, et d'identifier les capacités de chaque modèle pour traiter des données à une meilleur résolution, telles que la bande-X. Ensuite, les résultats obtenus démontrent que la fiabilité des simulations hydrologiques dépend intrinsèquement des caractéristiques des données pluviométriques. De plus, les données du radar bande-X pourraient mesurer des pics de précipitations plus élevés et le modèle complètement distribué était plus sensible à une meilleure résolution des données pluviométriques. Par la suite, des données de pluie provenant des radars météorologiques situés à des endroits complètement différents (Brésil, France, Japon) ont été analysées et comparées statistiquement afin d'améliorer la compréhension générale du comportement scalant des précipitations. De plus, le théorème d'intersection a été appliqué pour mettre en évidence les impacts de la variabilité spatiale d'un réseau virtuel de pluviomètres, qui a été généré en considérant l'emplacement des centres de masse de chaque sous-bassin versant de la vallée de la Bièvre. Ainsi, il a été possible d'identifier que la fractalité du réseau virtuel a conduit à une perte d'information importante des champs de pluie, biaisant leurs statistiques. Cela indique que le processus commun (largement retrouvé dans la littérature) de calibration des données radar à l'aide de pluviomètres devrait correctement prendre en compte cette fractalité. Enfin, une nouvelle approche de prévision stochastique immédiate a été proposée, à l'aide du modèle des multifractals universels (UM) en cascades continues. Cette méthode a été appliquée aux données des radars pluviométriques de la région amazonienne brésilienne et de Paris. Bien qu'il soit encore en développement et nécessite quelques améliorations, les premiers résultats obtenus avec ce modèle de prévision présenté ici sont vraiment encourageants et corroborent une fois de plus le besoin de données à haute résolution spatio-temporelle pour faire face aux crues soudaines / The focus of this thesis was to bring a nonlinear geophysical approach to urban hydrology. It aimed the study of rainfall non-linearity scaling and intermittency, achieving a stochastic very short-range forecast (nowcast) method, as well as its application to hydrological processes in (semi-) urban environments. The overall hydrological modelling part concerned the Bièvre Valley, which is a 110 km2 semi-urbanized area in the southwest of Paris region. Therefore, three different studies were performed within this area using two hydrological models: the conceptually-based semi-distributed model InfoWorks CS over the total Bièvre catchment, and the physically-based fully-distributed model developed at École des Ponts ParisTech called Multi-Hydro over two sub-catchments. The main goals were to better understand the impacts of spatio-temporal variability of rainfall data by using two products (the Météo-France C-band radar data with a resolution of 1 km x 1 km x 5 min; and the ENPC DPSRI X-band radar data at a 250 m x 250 m x 3.41 min resolution) as input to the models, and to identify the capacities of each model to deal with better resolution data, such as the X-band one. Then, the obtained results demonstrate that the reliability of the hydrological simulations are intrinsically dependent on rainfall data features. Moreover, the X-band radar data could measure higher peaks of rainfall rates and the fully-distributed model was more sensitive to better resolution rainfall data. Afterwards, different weather rainfall radar data from completely different sites (Brazil, France, Japan) were statistically analysed and compared in order to improve the general comprehension of rainfall scaling behaviour. In addition, the Intersection Theorem was applied to highlight the impacts of spatial variability of a virtual rain gauge network. The latter was generated by considering the location of each Bièvre Valley sub-catchment mass centre. Thus, it was possible to identify that the fractality of the virtual network led to an important information loss of the rainfall fields, biasing their statistics. This indicates that the common process (largely found in literature) of radar data calibration using rain gauges should be properly take into account this fractality. Finally, a new stochastic nowcast approach was proposed, using the continuous in scale cascade Universal Multifractals (UM) model. This method was applied to weather rainfall radar data from the Brazilian Amazon region and Paris. Although it is still under development and needs some improvements, the first results obtained with this forecast model presented here in this thesis are really encouraging and once more corroborate to the need of high spatio-temporal resolution data to cope flash floods

Page generated in 0.5031 seconds