• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the dynamics of energy-critical focusing wave equations / Sur la dynamique d’équations des ondes avec une non-linéarité énergie-critique focalisante

Jendrej, Jacek 11 July 2016 (has links)
Cette thèse est consacrée à l’étude du comportement global des solutions de l’équation des ondes énergie-critique. On s’intéresse tout spécialement à la description de la dynamique du système dans l’espace de l’énergie. Nous développons une variante de la méthode d’énergie qui permet de construire des solutions explosives de type II, instables. Ensuite, par une démarche similaire, nous donnons le premier exemple d’une solution radiale de l’équation des ondes énergie-critique qui converge dans l’espace de l’énergie vers une superposition de deux états stationnaires (bulles). En appliquant notre méthode au cas de l’équation des ondes des applications harmoniques (wave map), nous obtenons des solutions de type bulle-antibulle, en toute classe d’équivariance k > 2. Pour l’équation des ondes énergie-critique radiale, nous étudions également le lien entre la vitesse de l’explosion de type II et la limite faible de la solution au moment de l’explosion. Finalement, nous montrons qu’il est impossible qu’une solution radiale converge vers une superposition de deux bulles ayant les signes opposés. / In this thesis we study the global behavior of solutions of the energy-criticalfocusing nonlinear wave equation, with a special emphasis on the description of the dynamics in the energy space. We develop a new approach, based on the energy method, to constructing unstable type II blow-up solutions. Next, we give the first example of a radial two-bubble solution of the energy-critical wave equation. By implementing this construction in the case of the equivariant wave map equation, we obtain bubble-antibubble solutions in equivariance classes k > 2. We also study the relationship between the speed of a type II blow-up and the weak limit of the solution at the blow-up time. Finally, we prove that there are no pure radial two-bubbles with opposite signs for the energy-critical wave equation.

Page generated in 0.0792 seconds