• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 28
  • 28
  • 11
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Application of hyperspectral remote sensing in stress detection and crop growth modeling in corn fields

Karimi-Zindashty, Yousef January 2005 (has links)
No description available.
22

Remote sensing of the distribution and quality of subtropical C3 and C4 grasses.

Adjorlolo, Clement. 16 August 2013 (has links)
Global climate change is expected to be accompanied by changes in the composition of plant functional types. Such changes are predicted to follow shifts in the percentage cover and abundance of grass species, following the C3 and C4 photosynthetic pathways. These two groups differ in a number of physiological, structural and biochemical aspects. It is important to measure these characteristic properties because they affect ecosystem processes, such as nutrient cycling. High spectral and spatial resolution remote sensing systems have been proven to offer data, which can be used to accurately detect, classify and map plant species. The major challenge, however, is that the spectral reflectance data obtained over many narrow contiguous channels (i.e. hyperspectral data) represent multiple classes that are often mixed for a limited training-sample size. This is commonly referred to as the Hughes phenomenon or “the curse of dimensionality”. In the context of hyperspectral data analysis, the Hughes phenomenon often introduces a high degree of multicollinearity, which is caused by the use of highly-correlated spectral predictors. Multicollinearity is a prominent problem in processing hyperspectral data for vegetation applications, due to similarities in the spectral reflectance properties of biophysical and biochemical attributes. This study explored an innovative method to solve the problems associated with spectral dimensionality and the related multicollinearity, by developing a user-defined inter-band correlation filter function to resample hyperspectral data. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. The utility of the new resampling technique was assessed for discriminating C3 (Festuca costata) and C4 (Themeda triandra and Rendlia altera) grasses and for predicting their nutrient content (nitrogen, protein, moisture, and fibre), using partial least squares and random forest regressions. In general, results obtained showed that the user-defined inter-band correlation filter technique can mitigate the problem of multicollinearity in both classification and regression analyses. Wavebands in the shortwave infrared region were found to be very important in regression and classification analyses, using field spectra-only datasets. Next, the analyses were up-scaled from field spectra to the new generation multispectral satellite, WorldView-2 imagery, which was acquired for the Cathedral Peak region of the Drakensberg Mountains. The results obtained, showed that the WV2 image data contain useful information for classifying the C3 and C4 grasses and for predicting variability in their nitrogen and fibre concentrations. This study makes a contribution by developing a user-defined inter-band correlation filter to resample hyperspectral data, and thereby mitigating the high dimensionality and multicollinearity problems, in remote sensing applications involving C3 and C4 grass species or communities. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2013.
23

Land-cover mapping in an agriculture zone using simulated Sentinel-2 data

Pryor, Logan S January 2012 (has links)
Remote sensing technologies are used to assist in the mapping and monitoring of land cover in space and time. The European Space Agency’s (ESA) upcoming Sentinel-2 MultiSpectral Instrument (MSI) to be launched in 2013 has improved spatial and spectral properties compared to the current large-swath medium-resolution satellite sensors. Prior to the deployment of future sensors it is important to simulate and test the sensor data to evaluate the sensor's potential performance in producing the existing data products and develop new algorithms. This study simulated Sentinel-2 MSI data from airborne hyperspectral data over an agriculture area in northern Alberta, Canada. The standard Sentinel-2 MSI land-cover product was evaluated by comparing it to one created from the standard Landsat 5 TM and SPOT 5 HRV data products. Furthermore the standard Sentinel-2 MSI water column content band configuration and algorithm was evaluated for atmospheric correction purposes. / xi, 90 leaves : col. ill. ; 29 cm
24

Optimization of pre-processing variables for hyperspectral analysis of focal plane array Fourier transform infrared images

Pinchuk, Tommy. January 2006 (has links)
A genetic algorithm was employed to select the optimal combination of preprocessing variables, including data pretreatment, data manipulation and feature extraction procedures, for eventual clustering of a data set consisting of hyperspectral images acquired by a focal plane array Fourier transform infrared (FPA-FTIR) spectrometer. The data set consisted of infrared images of bacterial films, and the classification task investigated was the discrimination between Gram-positive and Gram-negative bacteria. The genetic algorithm evaluated combinations of variables pertaining to bacterial film thickness tolerances, baseline correction, pixel co-addition, outlier removal, smoothing, mean centering, normalization, derivatization, integration and principal component selection. Following numerous iterations of unsupervised processing, the genetic algorithm arrived at a sub-optimal solution yielding a clustering accuracy of 97.8% and a data utilization of 28.6%. The results provided insight into the co-dependencies of the pre-processing variables and their consequential effect on the selected data. The robustness of the classification model was evaluated and reinforced by the successful classification of two distinct validation sets. The overall success of the genetic algorithm suggests that it is an effective time saving resource for the optimization of pre-processing variables that does not require operator intervention.
25

Remote sensing and root zone soil moisture

Erindi-Kati, Anila January 2005 (has links)
This study investigated the possibility of three approaches in determination of soil moisture in the root zone. The aim of the study was to contribute to the development of soil moisture monitoring methods to better help crop best management practices. / Two fields were examined, one at the Macdonald Campus of McGill University and the other near St. Jean-sur-Richelieau. Three approaches were used; (1) a hand-held hyper-spectral sensor (350-2500 nm), (2) a Geonics RTM EM-38 conductivity meter and, (3) gravimetric soil moisture sampling. / The first experiment (at St. Jean-sur-Richelieu) investigated the possibility of monitoring soil moisture with the EM_38, in the presence of field elevation and soil texture. The second experiment (at Macdonald Campus) investigated the possibility of using hyper-spectral sensor data for determination of soil characteristics in the root zone, in the presence of such factors as (a) irrigation (main treatment), (b) nitrogen (sub-treatment), and (c) weed control (sub-sub-treatment). Statistical regression analyses and Artificial Neural Network models were used to select the best waveband region for determination of soil root zone moisture. / The coefficients of determination obtained by the statistical analyses ranged from 0.75 to 0.94. The wavebands most frequently identified by these analyses ranged from 1100 nm-1900 nm. / The performances of the ANN training models were considered acceptable (R2 from 0.6 to 0.8). The lack of sufficient data greatly impacts this approach.
26

Application of hyperspectral remote sensing in stress detection and crop growth modeling in corn fields

Karimi-Zindashty, Yousef January 2005 (has links)
This study used hyperspectral data to determine nitrogen, weed, and water stresses in a corn (Zea mays L.) field in southwestern Quebec, and incorporated these data in crop growth models for better crop growth simulation under stressful conditions. / In 2000, aerial hyperspectral images (72 wavebands, ranging from 407 to 949 nm) were acquired, and analyzed using a stepwise approach to identify wavebands useful in detecting weed and nitrogen stresses. Discriminant analysis (DA) was used to classify different weed and nitrogen treatments and their combinations. This analysis showed greater classification accuracy (nearly 75%) than those obtained with artificial neural networks (58%) or decision tree algorithms (60%), at the initial growth stages, the time when remedial actions are most needed to alleviate weed and nitrogen stresses. / To explore the possibility of improving nitrogen stress detection in corn in the presence of a confounding water stress, ground-based 2151 narrow-waveband reflectance values (350 to 2500 nm), were collected in 2002. Using DA with the chosen subset of narrow-wavebands, a classification accuracy of greater than 95% was obtained. / For crop growth monitoring, the STICS model was evaluated for yield and biomass estimation in cornfields under different stressful growth conditions using the data collected from 2000 to 2002. Measured yield, biomass, and leaf area index (LAI) were used for both calibration and validation of the model. High correlation coefficients between the measured and estimated grain yield (0.96), biomass (0.98), and LAI (0.93) indicated that the model has good potential in the simulation of corn growth. The model was also linked with LAI values estimated from the hyperspectral observations using the Support Vector Machines technique. Coupling STICS with remote sensing resulted in an overall improvement in the simulation of corn yield (6.3%) and biomass (3.7%). / A new approach was developed to apply crop growth models for yield estimation in weedy areas. The proposed method first corrects the measured/estimated LAI values in weed infested fields for weed effect, and then uses the corrected LAI values as input to the crop growth model. The results showed that the crop yield and biomass predictions were correctly simulated by this method.* / *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation).
27

Pixel-by pixel reduction of atmospheric haze effects in multispectral digital imagery of water /

Francis, John W. January 1989 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1989. / Includes bibliographical references.
28

P. Herc. 1570 pieces 4, 5, 6A, 6B : Philodemi de divitiis

Ponczoch, Joseph Anton, Philodemus, January 2004 (has links) (PDF)
Thesis (M.A.)--Brigham Young University. Dept. of Humanities, Classics, and Comparative Literature, 2004. / Includes bibliographical references (p. 79-83).
29

Tracking landscape changes in the Upper Cahaba River watershed and its tributaries (1974-2007) using Landsat and ASTER multipsectral image

Padgett-Vasquez, Steve. January 2010 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2010. / Title from PDF t.p. (viewed July 20, 2010). Includes bibliographical references (p. 38-42).
30

Comparing spectral-object based approaches for extracting and classifying transportation features using high resolution multi-spectral satellite imagery

Repaka, Sunil Reddy. January 2004 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Civil Engineering. / Title from title screen. Includes bibliographical references.

Page generated in 0.098 seconds